Electrically tunable Berry curvature and strong light-matter coupling in liquid crystal microcavities with 2D perovskite

The field of spinoptronics is underpinned by good control over photonic spin-orbit coupling in devices that have strong optical nonlinearities. Such devices might hold the key to a new era of optoelectronics where momentum and polarization degrees of freedom of light are interwoven and interfaced with electronics. However, manipulating photons through electrical means is a daunting task given their charge neutrality. In this work, we present electrically tunable microcavity exciton-polariton resonances in a Rashba-Dresselhaus spin-orbit coupling field. We show that different spin-orbit coupling fields and the reduced cavity symmetry lead to tunable formation of the Berry curvature, the hallmark of quantum geometrical effects. For this, we have implemented an architecture of a photonic structure with a two-dimensional perovskite layer incorporated into a microcavity filled with nematic liquid crystal. Our work interfaces spinoptronic devices with electronics by combining electrical control over both the strong light-matter coupling conditions and artificial gauge fields.

[1]  P. Lagoudakis,et al.  Realizing Persistent-Spin-Helix Lasing in the Regime of Rashba-Dresselhaus Spin-Orbit Coupling in a Dye-Filled Liquid-Crystal Optical Microcavity , 2022, Physical Review Applied.

[2]  U. Peschel,et al.  Electro-optical Switching of a Topological Polariton Laser , 2022, ACS Photonics.

[3]  Liantuan Xiao,et al.  Atom-optically synthetic gauge fields for a noninteracting Bose gas , 2022, Light, science & applications.

[4]  P. Lagoudakis,et al.  Annihilation of exceptional points from different Dirac valleys in a 2D photonic system , 2021, Nature Communications.

[5]  S. Schumacher,et al.  Manipulating polariton condensates by Rashba-Dresselhaus coupling at room temperature , 2021, Nature Communications.

[6]  Holonomy , 2021, Visual Differential Geometry and Forms.

[7]  D. Gamelin,et al.  Spin-orbit–coupled exciton-polariton condensates in lead halide perovskites , 2021, Science advances.

[8]  V. Ardizzone,et al.  Experimental investigation of a Non-Abelian gauge field in 2D perovskite photonic platform , 2021 .

[9]  A. Fieramosca,et al.  Nonlinear Parametric Scattering of Exciton Polaritons in Perovskite Microcavities. , 2021, Nano letters.

[10]  J. Yao,et al.  Realization of Exciton‐Mediated Optical Spin‐Orbit Interaction in Organic Microcrystalline Resonators , 2021, Laser & Photonics Reviews.

[11]  A. Truscott,et al.  Direct measurement of a non-Hermitian topological invariant in a hybrid light-matter system , 2020, Science advances.

[12]  M. Steger,et al.  Collective Excitations of Exciton-Polariton Condensates in a Synthetic Gauge Field. , 2020, Physical review letters.

[13]  J. Yao,et al.  Experimental Measurement of the Divergent Quantum Metric of an Exceptional Point. , 2020, Physical review letters.

[14]  J. Bloch,et al.  Microcavity polaritons for topological photonics [Invited] , 2020, Optical Materials Express.

[15]  I. Shelykh,et al.  Optical analogue of Dresselhaus spin–orbit interaction in photonic graphene , 2020, Nature Photonics.

[16]  P. Lagoudakis,et al.  Photonic Berry curvature in double liquid crystal microcavities with broken inversion symmetry , 2020, Physical Review B.

[17]  V. Ardizzone,et al.  Tuning of the Berry curvature in 2D perovskite polaritons , 2020, Nature Nanotechnology.

[18]  K. West,et al.  Measurement of the quantum geometric tensor and of the anomalous Hall drift , 2020, Nature.

[19]  Jan Carl Budich,et al.  Exceptional topology of non-Hermitian systems , 2019, 1912.10048.

[20]  J. Yao,et al.  Nontrivial band geometry in an optically active system , 2019, Nature Communications.

[21]  B. Rosenow,et al.  Voigt Exceptional Points in an Anisotropic ZnO-Based Planar Microcavity: Square-Root Topology, Polarization Vortices, and Circularity. , 2019, Physical review letters.

[22]  M. Kamińska,et al.  Exciton-Polaritons in a Tunable Microcavity with 2D-Perovskite , 2019, International Photonics and OptoElectronics Meeting 2019 (OFDA, OEDI, ISST, PE, LST, TSA).

[23]  P. Lagoudakis,et al.  Engineering spin-orbit synthetic Hamiltonians in liquid-crystal optical cavities , 2019, Science.

[24]  M. Soljačić,et al.  Synthesis and observation of non-Abelian gauge fields in real space , 2019, Science.

[25]  K. West,et al.  Measurement of the quantum geometric tensor and of the anomalous Hall drift , 2019, Nature.

[26]  V. Galitski,et al.  Artificial gauge fields with ultracold atoms. , 2019, Physics today.

[27]  M. Bandres,et al.  Light guiding by artificial gauge fields , 2018, Nature Photonics.

[28]  M. Bandres,et al.  Exciton-polariton topological insulator , 2018, Nature.

[29]  P. Kula,et al.  Refractive index matched liquid crystal cell for laser metrology application , 2018 .

[30]  Kenji Watanabe,et al.  Electrically switchable Berry curvature dipole in the monolayer topological insulator WTe2 , 2018, Nature Physics.

[31]  Jensen Li,et al.  Non-Abelian gauge field optics , 2018, Nature Communications.

[32]  F. Guinea,et al.  Polariton Anomalous Hall Effect in Transition-Metal Dichalcogenides. , 2018, Physical review letters.

[33]  D. Solnyshkov,et al.  Measuring the quantum geometric tensor in two-dimensional photonic and exciton-polariton systems , 2017, 1712.08731.

[34]  N. Goldman,et al.  Quantum simulation / Simulation quantique Artificial gauge fields in materials and engineered systems , 2017 .

[35]  I. Sagnes,et al.  Lasing in topological edge states of a one-dimensional lattice , 2017, 1704.07310.

[36]  Y. Tokura,et al.  Bulk rectification effect in a polar semiconductor , 2017, Nature Physics.

[37]  A. Souslov,et al.  Sonic Landau Levels and Synthetic Gauge Fields in Mechanical Metamaterials. , 2016, Physical review letters.

[38]  Daniele Sanvitto,et al.  The road towards polaritonic devices. , 2016, Nature materials.

[39]  B. Rosenow,et al.  Exceptional points in anisotropic planar microcavities , 2016, 1609.07653.

[40]  A. Eckardt,et al.  Colloquium: Atomic quantum gases in periodically driven optical lattices , 2016, 1606.08041.

[41]  M. Xiao,et al.  Synthetic gauge flux and Weyl points in acoustic systems , 2015, Nature Physics.

[42]  L. Fu,et al.  Quantum Nonlinear Hall Effect Induced by Berry Curvature Dipole in Time-Reversal Invariant Materials. , 2015, Physical review letters.

[43]  F. J. Rodríguez-Fortuño,et al.  Spin–orbit interactions of light , 2015, Nature Photonics.

[44]  F. Nori,et al.  Observation of non-Hermitian degeneracies in a chaotic exciton-polariton billiard , 2015, Nature.

[45]  Z. Q. Zhang,et al.  Synthetic gauge fields and Weyl point in Time-Reversal Invariant Acoustic Systems , 2015, 1503.06295.

[46]  D. Solnyshkov,et al.  Polariton Z topological insulator. , 2014, Physical review letters.

[47]  M. Soljačić,et al.  Topological photonics , 2014, Nature Photonics.

[48]  Gil Refael,et al.  Topological Polaritons , 2014, 1406.4156.

[49]  M. Amthor,et al.  An electrically pumped polariton laser , 2013, Nature.

[50]  D. Solnyshkov,et al.  Non-Abelian gauge fields in photonic cavities and photonic superfluids. , 2013, Physical review letters.

[51]  Zongfu Yu,et al.  Realizing effective magnetic field for photons by controlling the phase of dynamic modulation , 2012, Nature Photonics.

[52]  C. Ciuti Quantum fluids of light , 2012, 2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications.

[53]  J. Dalibard,et al.  Colloquium: Artificial gauge potentials for neutral atoms , 2010, 1008.5378.

[54]  C. Kane,et al.  Topological Insulators , 2019, Electromagnetic Anisotropy and Bianisotropy.

[55]  M. Romanelli,et al.  Observation of the optical spin Hall effect , 2007 .

[56]  Qian Niu,et al.  Berry phase effects on electronic properties , 2009, 0907.2021.

[57]  A. Kavokin,et al.  Optical spin hall effect. , 2005, Physical review letters.

[58]  S. Sarma,et al.  Spintronics: Fundamentals and applications , 2004, cond-mat/0405528.

[59]  M. S. Skolnick,et al.  Exciton-light coupling in single and coupled semiconductor microcavities: Polariton dispersion and polarization splitting , 1999 .

[60]  Schubert,et al.  Polarization-dependent optical parameters of arbitrarily anisotropic homogeneous layered systems. , 1996, Physical review. B, Condensed matter.

[61]  M. Berry Quantal phase factors accompanying adiabatic changes , 1984, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[62]  D. Thouless,et al.  Quantized Hall conductance in a two-dimensional periodic potential , 1992 .

[63]  Barry Simon,et al.  Holonomy, the Quantum Adiabatic Theorem, and Berry's Phase , 1983 .

[64]  Yize Jin,et al.  Topological insulators , 2014, Topology in Condensed Matter.

[65]  W. Marsden I and J , 2012 .

[66]  S. Sikdar,et al.  Fundamentals and applications , 1998 .

[67]  N. V. Bazhanova,et al.  On the Hall Effect in Ferromagnetics , 1958 .