Mathematical aspects of trapping modes in the theory of surface waves

Un canal horizontal de longueur infinie et de largeur et profondeur constantes contre un fluide non visqueux sous gravite. le fluide est borne par un cylindre immerge horizontal, en travers du canal, dont les generatrices sont normales aux parois laterales. Le fluide est mis en mouvement par une variation de pression en surface

[1]  F. Ursell,et al.  Trapping modes in the theory of surface waves , 1951, Mathematical Proceedings of the Cambridge Philosophical Society.

[2]  M. J. Lighthill,et al.  The eigenvalues of ∇2u + λu=0 when the boundary conditions are given on semi-infinite domains , 1953, Mathematical Proceedings of the Cambridge Philosophical Society.

[3]  F. Ursell,et al.  Edge waves on a sloping beach , 1952, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[4]  F. Ursell,et al.  On the exterior problems of acoustics , 1973, Mathematical Proceedings of the Cambridge Philosophical Society.

[5]  D. Evans,et al.  The trapping of surface waves above a submerged, horizontal cylinder , 1985, Journal of Fluid Mechanics.

[6]  F. Ursell,et al.  The expansion of water-wave potentials at great distances , 1968, Mathematical Proceedings of the Cambridge Philosophical Society.

[7]  D. Evans,et al.  Edge waves over a shelf: full linear theory , 1984, Journal of Fluid Mechanics.