Maximum Renamable Horn sub-CNFs

Abstract The NP-hard problem of finding the largest renamable Horn sub-CNF of a given CNF is considered, and a polynomial time approximation algorithm is presented for this problem. It is shown that for cubic CNFs this algorithm has a guaranteed performance ratio of 40 67 .

[1]  Michael E. Saks,et al.  A Complexity Index for Satisfiability Problems , 1994, IPCO.

[2]  Endre Boros,et al.  Recognition of q-Horn Formulae in Linear Time , 1994, Discret. Appl. Math..

[3]  David P. Williamson,et al.  Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.

[4]  Uriel Feige,et al.  Approximating the value of two power proof systems, with applications to MAX 2SAT and MAX DICUT , 1995, Proceedings Third Israel Symposium on the Theory of Computing and Systems.

[5]  Carsten Lund,et al.  Proof verification and hardness of approximation problems , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[6]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[7]  Giorgio Gallo,et al.  Algorithms for Testing the Satisfiability of Propositional Formulae , 1989, J. Log. Program..

[8]  Maria Grazia Scutellà,et al.  Polynomially Solvable Satisfiability Problems , 1988, Inf. Process. Lett..

[9]  A. Prékopa,et al.  Probabilistic bounds and algorithms for the maximum satisfiability problem , 1990 .

[10]  John N. Hooker,et al.  Extended Horn sets in propositional logic , 1991, JACM.

[11]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[12]  Harry R. Lewis,et al.  Renaming a Set of Clauses as a Horn Set , 1978, JACM.

[13]  Alon Itai,et al.  Unification as a Complexity Measure for Logic Programming , 1987, J. Log. Program..

[14]  Robert E. Tarjan,et al.  A Linear-Time Algorithm for Testing the Truth of Certain Quantified Boolean Formulas , 1979, Inf. Process. Lett..

[15]  Jean H. Gallier,et al.  Linear-Time Algorithms for Testing the Satisfiability of Propositional Horn Formulae , 1984, J. Log. Program..

[16]  Neil D. Jones,et al.  Complete problems for deterministic polynomial time , 1974, STOC '74.

[17]  Peter L. Hammer,et al.  Variable and Term Removal From Boolean Formulae , 1997, Discret. Appl. Math..

[18]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[19]  Bengt Aspvall,et al.  Recognizing Disguised NR(1) Instances of the Satisfiability Problem , 1980, J. Algorithms.

[20]  David P. Williamson,et al.  New 3/4-Approximation Algorithms for the Maximum Satisfiability Problem , 1994, SIAM J. Discret. Math..

[21]  John N. Hooker,et al.  Detecting Embedded Horn Structure in Propositional Logic , 1992, Inf. Process. Lett..

[22]  Alon Itai,et al.  On the Complexity of Timetable and Multicommodity Flow Problems , 1976, SIAM J. Comput..