Internal and external potential-field estimation from regional vector data at varying satellite altitude

When modeling global satellite data to recover a planetary magnetic or gravitational potential field and evaluate it elsewhere, the method of choice remains their analysis in terms of spherical harmonics. When only regional data are available, or when data quality varies strongly with geographic location, the inversion problem becomes severely ill-posed. In those cases, adopting explicitly local methods is to be preferred over adapting global ones (e.g., by regularization). Here, we develop the theory behind a procedure to invert for planetary potential fields from vector observations collected within a spatially bounded region at varying satellite altitude. Our method relies on the construction of spatiospectrally localized bases of functions that mitigate the noise amplification caused by downward continuation (from the satellite altitude to the planetary surface) while balancing the conflicting demands for spatial concentration and spectral limitation. Solving simultaneously for internal and external fields in the same setting of regional data availability reduces internal-field artifacts introduced by downward-continuing unmodeled external fields, as we show with numerical examples. The AC-GVSF are optimal linear combinations of vector spherical harmonics. Their construction is not altogether very computationally demanding when the concentration domains (the regions of spatial concentration) have circular symmetry, e.g., on spherical caps or rings - even when the spherical-harmonic bandwidth is large. Data inversion proceeds by solving for the expansion coefficients of truncated function sequences, by least-squares analysis in a reduced-dimensional space. Hence, our method brings high-resolution regional potential-field modeling from incomplete and noisy vector-valued satellite data within reach of contemporary desktop machines.

[1]  Nils Olsen,et al.  Mathematical Properties Relevant to Geomagnetic Field Modeling , 2010 .

[2]  Mark A. Wieczorek,et al.  Spatiospectral Concentration on a Sphere , 2004, SIAM Rev..

[3]  Carl Friedrich Gauss,et al.  Allgemeine Theorie des Erdmagnetismus , 1877 .

[4]  D. Oldenburg,et al.  NON-LINEAR INVERSION USING GENERAL MEASURES OF DATA MISFIT AND MODEL STRUCTURE , 1998 .

[5]  Mioara Mandea,et al.  Error distribution in regional modelling of the geomagnetic field , 2012 .

[6]  W. M. Kaula,et al.  An introduction to planetary physics : the terrestrial planets , 1968 .

[7]  W. M. Kaula,et al.  Theory of statistical analysis of data distributed over a sphere , 1967 .

[8]  C. Gerhards Locally Supported Wavelets for the Separation of spherical Vector Fields with Respect to their Sources , 2012, Int. J. Wavelets Multiresolution Inf. Process..

[9]  Nico Sneeuw,et al.  Assessing Greenland ice mass loss by means of point-mass modeling: a viable methodology , 2011 .

[10]  F. Sansò,et al.  Band-limited functions on a bounded spherical domain: the Slepian problem on the sphere , 1999 .

[11]  Torsten Mayer-Gürr,et al.  Regional gravity modeling in terms of spherical base functions , 2006 .

[12]  F. Simons,et al.  Parametrizing surface wave tomographic models with harmonic spherical splines , 2008 .

[13]  D. J. Stevenson,et al.  Planetary magnetism , 2013 .

[14]  C. Mayer,et al.  Separating inner and outer Earth's magnetic field from CHAMP satellite measurements by means of vector scaling functions and wavelets , 2006 .

[15]  Nils Olsen,et al.  Sources of the Geomagnetic Field and the Modern Data That Enable Their Investigation , 2014 .

[16]  Willi Freeden,et al.  Spherical Harmonics Based Special Function Systems and Constructive Approximation Methods , 2018 .

[17]  George E. Backus,et al.  Poloidal and toroidal fields in geomagnetic field modeling , 1986 .

[18]  Mioara Mandea,et al.  From global to regional analysis of the magnetic field on the sphere using wavelet frames , 2003 .

[19]  Frederik J. Simons,et al.  Potential-field estimation using scalar and vector slepian functions at satellite altitude , 2015 .

[20]  D. Slepian,et al.  Prolate spheroidal wave functions, fourier analysis and uncertainty — II , 1961 .

[21]  D. Slepian Some comments on Fourier analysis, uncertainty and modeling , 1983 .

[22]  R. Merrill The magnetic field of the earth , 1996 .

[23]  Mioara Mandea,et al.  Crustal Magnetic Fields of Terrestrial Planets , 2010 .

[24]  Vincent Lesur,et al.  Introducing localized constraints in global geomagnetic field modelling , 2006 .

[25]  R. H. Estes,et al.  Large‐scale, near‐field magnetic fields from external sources and the corresponding induced internal field , 1983 .

[26]  Peiliang Xu,et al.  The value of minimum norm estimation of geopotential fields , 1992 .

[27]  Christian Gerhards,et al.  A combination of downward continuation and local approximation for harmonic potentials , 2013, 1312.5856.

[28]  Willi Freeden,et al.  Spherical Functions of Mathematical Geosciences: A Scalar, Vectorial, and Tensorial Setup , 2008, Geosystems Mathematics.

[29]  Raymond E. Arvidson,et al.  Overview of the Mars Global Surveyor mission , 2001 .

[30]  M. Watkins,et al.  Improved methods for observing Earth's time variable mass distribution with GRACE using spherical cap mascons , 2015 .

[31]  Willi Freeden,et al.  Constructive approximation and numerical methods in geodetic research today – an attempt at a categorization based on an uncertainty principle , 1999 .

[32]  Remko Scharroo,et al.  Generic Mapping Tools: Improved Version Released , 2013 .

[33]  M. Wieczorek,et al.  Gravity and Topography of the Terrestrial Planets , 2015 .

[34]  Guy Masters “Theoretical Global Seismology” by A. Dahlen and J. Tromp , 1999 .

[35]  Rodney A. Kennedy,et al.  Efficient Computation of Slepian Functions for Arbitrary Regions on the Sphere , 2016, IEEE Transactions on Signal Processing.

[36]  Robert L. Parker,et al.  Regularized geomagnetic field modelling using monopoles , 1994 .

[37]  Catherine Constable,et al.  Foundations of geomagnetism , 1996 .

[38]  William I. Newman,et al.  Mathematical Methods for Geophysics and Space Physics , 2016 .

[39]  Partha P. Mitra,et al.  The concentration problem for vector fields , 2005 .

[40]  Clifford H. Thurber,et al.  Parameter estimation and inverse problems , 2005 .

[41]  George E. Backus,et al.  Harmonic splines for geomagnetic modelling , 1982 .

[42]  Roel Snieder,et al.  Model Estimations Biased by Truncated Expansions: Possible Artifacts in Seismic Tomography , 1996, Science.

[43]  Christian Gerhards,et al.  Spherical decompositions in a global and local framework: theory and an application to geomagnetic modeling , 2011 .

[44]  N. Sneeuw Global spherical harmonic analysis by least‐squares and numerical quadrature methods in historical perspective , 1994 .

[45]  S. Solomon,et al.  MESSENGER Mission Overview , 2007 .

[46]  Klaus Regenauer-Lieb,et al.  Melt instabilities in an intraplate lithosphere and implications for volcanism in the Harrat Ash‐Shaam volcanic field (NW Arabia) , 2015 .

[47]  E. Grafarend,et al.  Ellipsoidal spectral properties of the Earth’s gravitational potential and its first and second derivatives , 2005 .

[48]  Rui Liu,et al.  Investigating plasma motion of magnetic clouds at 1 AU through a velocity‐modified cylindrical force‐free flux rope model , 2014, 1502.05112.

[49]  F. Simons,et al.  Spherical Slepian functions and the polar gap in geodesy , 2005, math/0603271.

[50]  Mioara Mandea,et al.  Revised spherical cap harmonic analysis (R‐SCHA): Validation and properties , 2006 .

[51]  Clark R. Chapman,et al.  The MESSENGER mission to Mercury: Scientific objectives and implementation , 2001 .

[52]  Stefan Maus,et al.  An ellipsoidal harmonic representation of Earth's lithospheric magnetic field to degree and order 720 , 2010 .

[53]  François W. Primeau,et al.  A Guided Tour of Mathematical Methods for the Physical Sciences , 2002 .

[54]  Richard D. Starr,et al.  The MESSENGER mission to Mercury: scientific payload , 2001 .

[55]  Frederik J. Simons,et al.  High-resolution local magnetic field models for the Martian South Pole from Mars Global Surveyor data , 2015 .

[56]  Frederik J. Simons,et al.  Scalar and vector Slepian functions, spherical signal estimation and spectral analysis , 2013, 1306.3184.

[57]  N. Bokor,et al.  Revisiting the Concentration Problem of Vector Fields within a Spherical Cap: A Commuting Differential Operator Solution , 2013, 1302.5261.

[58]  Richard J. Blakely,et al.  The Magnetic Field of the Earth's Lithosphere: The Satellite Perspective , 1999 .

[59]  F. Simons,et al.  Spatiospectral concentration of vector fields on a sphere , 2013, 1306.3201.

[60]  R. Blakely Potential theory in gravity and magnetic applications , 1996 .

[61]  Anthony C. Davison,et al.  Bootstrap Methods and Their Application , 1998 .

[62]  Nils Olsen,et al.  Separation of the Magnetic Field into External and Internal Parts , 2010 .

[63]  Mehdi Eshagh,et al.  Spatially Restricted Integrals in Gradiometric Boundary Value Problems , 2009 .