Geochemical and mineralogical indicators for aqueous processes in the Columbia Hills of Gusev crater, Mars

[1] Water played a major role in the formation and alteration of rocks and soils in the Columbia Hills. The extent of alteration ranges from moderate to extensive. Five distinct rock compositional classes were identified; the order for degree of alteration is Watchtower ≅ Clovis > Wishstone ≅ Peace > Backstay. The rover's wheels uncovered one unusual soil (Paso Robles) that is the most S-rich material encountered. Clovis class rocks have compositions similar to Gusev plains soil but with higher Mg, Cl, and Br and lower Ca and Zn; Watchtower and Wishstone classes have high Al, Ti, and P and low Cr and Ni; Peace has high Mg and S and low Al, Na, and K; Backstay basalts have high Na and K compared to plains Adirondack basalts; and Paso Robles soil has high S and P. Some rocks are corundum-normative, indicating that their primary compositions were changed by loss and/or gain of rock-forming elements. Clovis materials consist of magnetite, nanophase ferric-oxides (npOx), hematite, goethite, Ca-phosphates, Ca- and Mg-sulfates, pyroxene, and secondary aluminosilicates. Wishstone and Watchtower rocks consist of Fe-oxides/oxyhydroxides, ilmenite, Ca-phosphate, pyroxene, feldspar, Mg-sulfates, and secondary aluminosilicates. Peace consists of magnetite, npOx, Mg- and Ca-sulfates, pyroxene, olivine, feldspar, apatite, halides, and secondary aluminosilicates. Paso Robles consists of Fe3+-, Mg-, Ca-, and other sulfates, Ca-phosphates, hematite, halite, allophane, and amorphous silica. Columbia Hills outcrops and rocks may have formed by the aqueous alteration of basaltic rocks, volcaniclastic materials, and/or impact ejecta by solutions that were rich in acid-volatile elements.

[1]  William H. Farrand,et al.  Rocks of the Columbia Hills , 2006 .

[2]  K. Herkenhoff,et al.  Sulfate deposition in subsurface regolith in Gusev crater, Mars , 2006 .

[3]  D. Ming,et al.  Mössbauer mineralogy of rock, soil, and dust at Gusev crater, Mars: Spirit's journey through weakly altered olivine basalt on the plains and pervasively altered basalt in the Columbia Hills , 2006 .

[4]  Raymond E. Arvidson,et al.  In-Situ and Experimental Evidence for Acidic Weathering of Rocks and Soils on Mars , 2006 .

[5]  William H. Farrand,et al.  Overview of the Spirit Mars Exploration Rover Mission to Gusev Crater: Landing site to Backstay Rock in the Columbia Hills , 2006 .

[6]  Jeffrey R. Johnson,et al.  Spectral variability among rocks in visible and near‐infrared multispectral Pancam data collected at Gusev crater: Examinations using spectral mixture analysis and related techniques , 2006 .

[7]  Steven W. Squyres,et al.  Alpha Particle X‐Ray Spectrometer (APXS): Results from Gusev crater and calibration report , 2006 .

[8]  William H. Farrand,et al.  Evidence of phyllosilicates in Wooly Patch, an altered rock encountered at West Spur, Columbia Hills, by the Spirit rover in Gusev crater, Mars , 2006 .

[9]  Richard V. Morris,et al.  Laboratory Simulated Acid-Sulfate Weathering of Basaltic Materials: Implications for Formation of Sulfates at Meridiani Planum and Gusev Crater, Mars , 2005 .

[10]  William H. Farrand,et al.  Chemistry and mineralogy of outcrops at Meridiani Planum , 2005 .

[11]  Steven W. Squyres,et al.  Geochemical modeling of evaporation processes on Mars: Insight from the sedimentary record at Meridiani Planum , 2005 .

[12]  Jeffrey R. Johnson,et al.  Provenance and diagenesis of the evaporite-bearing Burns formation, Meridiani Planum, Mars , 2005 .

[13]  H. Keselman,et al.  Multiple Comparison Procedures , 2005 .

[14]  Amitabha Ghosh,et al.  An integrated view of the chemistry and mineralogy of martian soils , 2005, Nature.

[15]  D. Ming,et al.  Water alteration of rocks and soils on Mars at the Spirit rover site in Gusev crater , 2005, Nature.

[16]  William K. Hartmann,et al.  Martian cratering 8: Isochron refinement and the chronology of Mars , 2005 .

[17]  T. Encrenaz,et al.  Mars Surface Diversity as Revealed by the OMEGA/Mars Express Observations , 2005, Science.

[18]  A. Knoll,et al.  The Opportunity Rover's Athena Science Investigation at Meridiani Planum, Mars , 2004, Science.

[19]  R. Rieder,et al.  Chemistry of Rocks and Soils at Meridiani Planum from the Alpha Particle X-ray Spectrometer , 2004, Science.

[20]  U. Bonnes,et al.  Jarosite and Hematite at Meridiani Planum from Opportunity's Mössbauer Spectrometer , 2004, Science.

[21]  Jeffrey R. Johnson,et al.  In Situ Evidence for an Ancient Aqueous Environment at Meridiani Planum, Mars , 2004, Science.

[22]  J. Rimstidt,et al.  Jarosite as an indicator of water-limited chemical weathering on Mars , 2004, Nature.

[23]  R E Arvidson,et al.  Basaltic rocks analyzed by the Spirit Rover in Gusev Crater. , 2004, Science.

[24]  R Sullivan,et al.  The Spirit Rover's Athena science investigation at Gusev Crater, Mars. , 2004, Science.

[25]  D. Ming,et al.  Mineralogy at Gusev Crater from the Mössbauer Spectrometer on the Spirit Rover , 2004, Science.

[26]  Scott M. McLennan,et al.  Acid-sulfate weathering of synthetic Martian basalt: The acid fog model revisited , 2004 .

[27]  G. Ross Phosphates: Geochemical, Geobiological and Materials Importance , 2004 .

[28]  Raul A. Romero,et al.  Athena Mars rover science investigation , 2003 .

[29]  P. Christensen,et al.  THEMIS characterization of the MER Gusev crater landing site , 2003 .

[30]  O. Eugster,et al.  Ages and Geologic Histories of Martian Meteorites , 2001 .

[31]  Richard V. Morris,et al.  Mineralogy, composition, and alteration of Mars Pathfinder rocks and soils: Evidence from multispectral, elemental, and magnetic data on terrestrial analogue, SNC meteorite, and Pathfinder samples , 2000 .

[32]  R. Kerrich,et al.  Geochemical characteristics of aluminum depleted and undepleted komatiites and HREE-enriched low-Ti tholeiites, western Abitibi greenstone belt: A heterogeneous mantle plume-convergent margin environment , 1997 .

[33]  M. Lindstrom,et al.  Geochemistry of and alteration phases in martian lherzolite Y-793605 , 1997 .

[34]  Y. Ikeda Petrology and mineralogy of the Y-793605 martian meteorite , 1997 .

[35]  A. Banin,et al.  Acidic volatiles and the Mars soil , 1997 .

[36]  R. Feely,et al.  Phosphate removal by oceanic hydrothermal processes: An update of the phosphorus budget in the oceans , 1996 .

[37]  M. Lindstrom,et al.  Comparison of the LEW88516 and ALHA77005 martian meteorites: Similar but distinct , 1994 .

[38]  H. V. Lauer,et al.  Mineralogy of three slightly palagonitized basaltic tephra samples from the summit of Mauna Kea, Hawaii , 1993 .

[39]  D. Ming Lunar sourcebook. A user's guide to the moon , 1992 .

[40]  D. Golden,et al.  Partially acidulated reactive phosphate rock (PAPR) fertilizer and its reactions in soil , 1991, Fertilizer research.

[41]  R. Burns,et al.  Iron‐sulfur mineralogy of Mars: Magmatic evolution and chemical weathering products , 1990 .

[42]  R. Burns,et al.  Evolution of sulfide mineralization on Mars , 1990 .

[43]  J. Dixon,et al.  Minerals in soil environments , 1990 .

[44]  A. Tamhane,et al.  Multiple Comparison Procedures. , 1989 .

[45]  R. Morris,et al.  Evidence for pigmentary hematite on Mars based on optical, magnetic, and Mossbauer studies of superparamagnetic (nanocrystalline) hematite , 1989 .

[46]  R. W. Le Maitre,et al.  A Chemical Classification of Volcanic Rocks Based on the Total Alkali-Silica Diagram , 1986 .

[47]  D. Clague,et al.  Geochemistry of tholeiitic and alkalic lavas from the Koolau Range, Oahu, Hawaii: Implications for Hawaiian volcanism , 1984 .

[48]  R. Evans,et al.  Petrologic and geochemical variations along the Mid-Atlantic Ridge from 29 degrees N to 73 degrees N , 1983 .

[49]  J. S. Eldridge,et al.  Petrogenetic relationship between Allan Hills 77005 and other achondrites , 1979 .

[50]  G. Thompson,et al.  Atlantic ocean floor: Geochemistry and petrology of basalts from legs 2 and 3 of the Deep‐Sea Drilling Project , 1974 .

[51]  T. Irvine,et al.  A Guide to the Chemical Classification of the Common Volcanic Rocks , 1971 .

[52]  W. L. Nelson,et al.  Soil Fertility and Fertilizers , 1957 .

[53]  M. Mellon,et al.  A volcanic interpretation of Gusev Crater surface materials from thermophysical, spectral, and morphological evidence , 2005 .

[54]  F. Wall,et al.  Introduction to phoscorites: occurrence, composition, nomenclature and petrogenesis , 2004 .

[55]  P. Cheeseman Paul Stolorz , Jet Propulsion Laboratory , California Institute of Technology , 2004 .

[56]  P. Candela,et al.  Apatite in Igneous Systems , 2002 .

[57]  D. Nordstrom,et al.  Iron and Aluminum Hydroxysulfates from Acid Sulfate Waters , 2000 .

[58]  G. B. Dalrymple,et al.  THE GEOLOGY AND PETROLOGY OF MAUNA KEA VOLCANO, HAWAII : A STUDY OF POSTSHIELD VOLCANISM , 1997 .

[59]  Martha W. Schaefer,et al.  Mineral spectroscopy : a tribute to Roger G. Burns , 1996 .

[60]  J. Bishop,et al.  Schwertmannite on Mars? Spectroscopic analyses of schwertmannite, its relationship to other ferric minerals, and its possible presence in the surface material on Mars , 1996 .

[61]  H. Waenke,et al.  The bulk composition, mineralogy and internal structure of Mars , 1992 .

[62]  H. Melosh Impact Cratering: A Geologic Process , 1986 .

[63]  W. White,et al.  Petrologic and geochemical variations along the Mid-Atlantic Ridge from 27?N to 73?N , 1983 .

[64]  E. Deevey Mineral cycles. , 1970, Scientific American.

[65]  W. Lindsay,et al.  Nature of the Reactions of Monocalcium Phosphate Monohydrate in Soils: II. Dissolution and Precipitation Reactions Involving Iron, Aluminum, Manganese, and Calcium 1 , 1959 .

[66]  J. Henderson Numerical Experiments on Continental Lithosphere Extension Department of Earth and Planetary Sciences , 2022 .