The Karush–Kuhn–Tucker optimality conditions for fuzzy optimization problems

This paper considers optimization problems with fuzzy-valued objective functions. For this class of fuzzy optimization problems we obtain Karush–Kuhn–Tucker type optimality conditions considering the concept of generalized Hukuhara differentiable and pseudo-invex fuzzy-valued functions.

[1]  Masahiro Inuiguchi,et al.  Possibilistic linear programming: a brief review of fuzzy mathematical programming and a comparison with stochastic programming in portfolio selection problem , 2000, Fuzzy Sets Syst..

[2]  Yacov Y. Haimes,et al.  Multiobjective Decision Making: Theory and Methodology , 1983 .

[3]  R. Słowiński,et al.  Stochastic Versus Fuzzy Approaches to Multiobjective Mathematical Programming under Uncertainty , 1990, Theory and Decision Library.

[4]  Yurilev Chalco-Cano,et al.  The Karush-Kuhn-Tucker optimality conditions for a class of fuzzy optimization problems using strongly generalized derivative , 2013, 2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS).

[5]  Luciano Stefanini,et al.  A generalization of Hukuhara difference and division for interval and fuzzy arithmetic , 2010, Fuzzy Sets Syst..

[6]  Y Chalco Cano,et al.  GENERALIZED DERIVATIVE AND -DERIVATIVE FOR SET-VALUED FUNCTIONS , 2011 .

[7]  Jiuping Xu,et al.  Generalized convex fuzzy mappings and fuzzy variational-like inequality , 2009, Fuzzy Sets Syst..

[8]  Heinrich Rommelfanger,et al.  Fuzzy linear programming with single or multiple objective funtions , 1999 .

[9]  Weldon A. Lodwick,et al.  Fuzzy Optimization - Recent Advances and Applications , 2010, Studies in Fuzziness and Soft Computing.

[10]  José L. Verdegay,et al.  Fuzzy Optimization: Recent Advances , 1994 .

[11]  S. Seikkala On the fuzzy initial value problem , 1987 .

[12]  Yurilev Chalco-Cano,et al.  On invex fuzzy mappings and fuzzy variational-like inequalities , 2012, Fuzzy Sets Syst..

[13]  Luciano Stefanini,et al.  Some notes on generalized Hukuhara differentiability of interval-valued functions and interval differential equations , 2012 .

[14]  Barnabás Bede,et al.  Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations , 2005, Fuzzy Sets Syst..

[15]  Hsien-Chung Wu,et al.  Duality Theory in Fuzzy Linear Programming Problems with Fuzzy Coefficients , 2003, Fuzzy Optim. Decis. Mak..

[16]  Barnabás Bede,et al.  Generalized differentiability of fuzzy-valued functions , 2013, Fuzzy Sets Syst..

[17]  Hsien-Chung Wu,et al.  The Karush-Kuhn-Tucker optimality conditions for multi-objective programming problems with fuzzy-valued objective functions , 2009, Fuzzy Optim. Decis. Mak..

[18]  Yurilev Chalco-Cano,et al.  Calculus for interval-valued functions using generalized Hukuhara derivative and applications , 2013, Fuzzy Sets Syst..

[19]  M. Hukuhara INTEGRATION DES APPLICAITONS MESURABLES DONT LA VALEUR EST UN COMPACT CONVEXE , 1967 .

[20]  R. Słowiński Fuzzy sets in decision analysis, operations research and statistics , 1999 .

[21]  Hsien-Chung Wu,et al.  The Karush-Kuhn-Tucker optimality conditions for the optimization problem with fuzzy-valued objective function , 2007, Math. Methods Oper. Res..

[22]  Yurilev Chalco-Cano,et al.  Optimality conditions of type KKT for optimization problem with interval-valued objective function via generalized derivative , 2013, Fuzzy Optim. Decis. Mak..

[23]  M. Puri,et al.  DIFFERENTIAL FOR FUZZY FUNCTION , 1983 .

[24]  Hsien-Chung Wu,et al.  The optimality conditions for optimization problems with convex constraints and multiple fuzzy-valued objective functions , 2009, Fuzzy Optim. Decis. Mak..