Decoupling Chemically Active 2D Molecular Overlayers from the Substrate: Chlorophenyl Porphyrins on Graphene/Ir(111)

[1]  D. J. Mowbray,et al.  Supramolecular Ordering and Reactions of a Chlorophenyl Porphyrin on Ag(111) , 2020, The Journal of Physical Chemistry C.

[2]  B. Tang,et al.  Fabrication and functions of graphene-molecule-graphene single-molecule junctions. , 2020, The Journal of chemical physics.

[3]  S. A. Parah,et al.  Room temperature high Giant Magnetoresistance graphene based spin valve and its application for realization of logic gates , 2020 .

[4]  C. Lambert,et al.  Robust graphene-based molecular devices , 2019, Nature Nanotechnology.

[5]  R. Havenith,et al.  Low-Dimensional Metal–Organic Coordination Structures on Graphene , 2019, The journal of physical chemistry. C, Nanomaterials and interfaces.

[6]  Jingcheng Li,et al.  Electrically Addressing the Spin of a Magnetic Porphyrin through Covalently Connected Graphene Electrodes. , 2019, Nano letters.

[7]  D. J. Mowbray,et al.  Roles of Precursor Conformation and Adatoms in Ullmann Coupling: An Inverted Porphyrin on Cu(111) , 2019, Chemistry of Materials.

[8]  E. Pickwell‐MacPherson,et al.  Graphene controlled Brewster angle device for ultra broadband terahertz modulation , 2018, Nature Communications.

[9]  L. Barreto,et al.  Unraveling the Atomic Structure of Fe Intercalated under Graphene on Ir(111): A Multitechnique Approach , 2018, Chemistry of Materials.

[10]  Jin Yu,et al.  Bandgap modulation of partially chlorinated graphene (C4Cl) nanosheets via biaxial strain and external electric field: a computational study , 2018, Applied Physics A.

[11]  Jun Yan,et al.  Asymmetric Two-Terminal Graphene Detector for Broadband Radiofrequency Heterodyne- and Self-Mixing. , 2018, Nano letters.

[12]  G. Gao,et al.  Thermal spin filtering effect and giant magnetoresistance of half-metallic graphene nanoribbon co-doped with non-metallic Nitrogen and Boron , 2018 .

[13]  V. Brosco,et al.  Quantum Interference Assisted Spin Filtering in Graphene Nanoflakes. , 2018, Nano letters.

[14]  M. Stöhr,et al.  1,3,5-Benzenetribenzoic Acid on Cu(111) and Graphene/Cu(111): A Comparative STM Study , 2016, The journal of physical chemistry. C, Nanomaterials and interfaces.

[15]  S. Louie,et al.  Tuning charge and correlation effects for a single molecule on a graphene device , 2016, Nature Communications.

[16]  N. Champness,et al.  Physisorption controls the conformation and density of states of an adsorbed porphyrin , 2015 .

[17]  Andrew J. Medford,et al.  From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis , 2015 .

[18]  M. Persson,et al.  Adatoms underneath single porphyrin molecules on Au(111). , 2015, Journal of the American Chemical Society.

[19]  J. Barth,et al.  Porphyrins at interfaces. , 2015, Nature chemistry.

[20]  Y. Girard,et al.  Electronic interaction between nitrogen-doped graphene and porphyrin molecules. , 2014, ACS nano.

[21]  B. Hammer,et al.  Sequential oxygen and alkali intercalation of epitaxial graphene on Ir(111): enhanced many-body effects and formation of pn-interfaces , 2014 .

[22]  David Beljonne,et al.  Atomically precise edge chlorination of nanographenes and its application in graphene nanoribbons , 2013, Nature Communications.

[23]  X. Wallart,et al.  Exploring electronic structure of one-atom thick polycrystalline graphene films: A nano angle resolved photoemission study , 2013, Scientific Reports.

[24]  A. Krasheninnikov,et al.  Ion impacts on graphene/Ir(111): interface channeling, vacancy funnels, and a nanomesh. , 2013, Nano letters.

[25]  Zhongfan Liu,et al.  Photo-induced free radical modification of graphene. , 2013, Small.

[26]  James Piton,et al.  The U11 PGM beam line at the Brazilian National Synchrotron Light Laboratory , 2013 .

[27]  V. Berry,et al.  How do the electrical properties of graphene change with its functionalization? , 2013, Small.

[28]  Yaw-Wen Yang,et al.  Surface oxides of Ir(111) prepared by gas-phase oxygen atoms , 2012 .

[29]  Hasan Sahin,et al.  Chlorine Adsorption on Graphene: Chlorographene , 2012, 1211.5242.

[30]  S. Ulstrup,et al.  Oxygen switching of the epitaxial graphene-metal interaction. , 2012, ACS nano.

[31]  T. Michely,et al.  Oxygen intercalation under graphene on Ir(111): energetics, kinetics, and the role of graphene edges. , 2012, ACS nano.

[32]  Zhenhua Ni,et al.  Engineering the Electronic Structure of Graphene , 2012, Advanced materials.

[33]  D. Vyalikh,et al.  Controllable p-doping of graphene on Ir(111) by chlorination with FeCl3 , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[34]  Y. Dedkov,et al.  Graphene on metallic surfaces: problems and perspectives. , 2012, Physical chemistry chemical physics : PCCP.

[35]  C. Dimitrakopoulos,et al.  State-of-the-art graphene high-frequency electronics. , 2012, Nano letters.

[36]  Zhirong Liu,et al.  Evolutionary Chlorination of Graphene: From Charge-Transfer Complex to Covalent Bonding and Nonbonding , 2012 .

[37]  D. Jena,et al.  Broadband graphene terahertz modulators enabled by intraband transitions , 2012, Nature Communications.

[38]  W. Haensch,et al.  High-frequency graphene voltage amplifier. , 2011, Nano letters.

[39]  Hailin Peng,et al.  Photochemical chlorination of graphene. , 2011, ACS nano.

[40]  F. Xia,et al.  High-frequency, scaled graphene transistors on diamond-like carbon , 2011, Nature.

[41]  S. Louie,et al.  Many-body interactions in quasi-freestanding graphene , 2011, Proceedings of the National Academy of Sciences.

[42]  A. Bostwick,et al.  Growth from below: graphene bilayers on Ir(111). , 2011, ACS nano.

[43]  S. Barja,et al.  Self-organization of electron acceptor molecules on graphene. , 2010, Chemical communications.

[44]  N. A. Romero,et al.  Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[45]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[46]  R. Comin,et al.  Surface core level shifts of clean and oxygen covered Ir(111) , 2009 .

[47]  G. Henkelman,et al.  A grid-based Bader analysis algorithm without lattice bias , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[48]  T. Michely,et al.  Structural coherency of graphene on Ir(111). , 2008, Nano letters.

[49]  J. Gómez‐Herrero,et al.  WSXM: a software for scanning probe microscopy and a tool for nanotechnology. , 2007, The Review of scientific instruments.