An improved analytical description of orthotropy in metallic sheets

The correct description of initial plastic anisotropy of metallic sheets plays a key role in modelling of sheet forming processes since prediction of material flow, residual stresses and springback as well as wrinkling and limiting strains are significantly affected by the phenomenological yield function applied in the analysis. In the last decades considerable improvement of anisotropic yield criteria has been achieved. Among these, the yield criterion proposed by Paraianu et al. [An improvement of the BBC2000 yield criterion. In: Proceedings of the ESAFORM 2003 Conference] is one of most promising plane stress yield criteria available for orthotropic sheet materials. This work aims to improve this yield criterion with respect to flexibility. The capabilities of the modified yield function will be demonstrated by applications to an anisotropic aluminium alloy sheet material.

[1]  Jacques Besson,et al.  A yield function for anisotropic materials Application to aluminum alloys , 2004 .

[2]  Han Huetink,et al.  A planar isotropic yield criterion based on mechanical testing at multi-axial stress states , 1995 .

[3]  R. Hill The mathematical theory of plasticity , 1950 .

[4]  A. P. Karafillis,et al.  A general anisotropic yield criterion using bounds and a transformation weighting tensor , 1993 .

[5]  W. Hosford A Generalized Isotropic Yield Criterion , 1972 .

[6]  R. Hill Constitutive modelling of orthotropic plasticity in sheet metals , 1990 .

[7]  John L. Bassani,et al.  Yield characterization of metals with transversely isotropic plastic properties , 1977 .

[8]  M. Gotoh A theory of plastic anisotropy based on a yield function of fourth order (plane stress state)—I , 1977 .

[9]  F. Barlat,et al.  Plane stress yield function for aluminum alloy sheets—part 1: theory , 2003 .

[10]  Frédéric Barlat,et al.  Plastic behavior and stretchability of sheet metals. Part I: A yield function for orthotropic sheets under plane stress conditions , 1989 .

[11]  Bernard Budiansky,et al.  Anisotropic Plasticity of Plane-Isotropic Sheets , 1984 .

[12]  F. Barlat,et al.  Prediction of tricomponent plane stress yield surfaces and associated flow and failure behavior of strongly textured f.c.c. polycrystalline sheets , 1987 .

[13]  F. Barlat,et al.  Yielding description for solution strengthened aluminum alloys , 1997 .

[14]  Klaus Pöhlandt,et al.  Formability of Metallic Materials , 2000 .

[15]  R. Hill A theory of the yielding and plastic flow of anisotropic metals , 1948, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[16]  G. Eckold 3 – Mechanics of Material Behaviour , 1994 .

[17]  F. Barlat,et al.  Yield function development for aluminum alloy sheets , 1997 .

[18]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[19]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[20]  F. Barlat,et al.  A six-component yield function for anisotropic materials , 1991 .

[21]  R. Hill Theoretical plasticity of textured aggregates , 1979, Mathematical Proceedings of the Cambridge Philosophical Society.

[22]  Jeong Whan Yoon,et al.  A pressure-sensitive yield criterion under a non-associated flow rule for sheet metal forming , 2004 .

[23]  Frédéric Barlat,et al.  Generalization of Drucker's Yield Criterion to Orthotropy , 2001 .

[24]  W. Müller Beitrag zur Charakterisierung von Blechwerkstoffen unter mehrachsiger Beanspruchung , 1996 .

[25]  R. Hill,et al.  A user-friendly theory of orthotropic plasticity in sheet metals , 1993 .

[26]  Dorel Banabic,et al.  A NEW YIELD CRITERION FOR ORTHOTROPIC SHEET METALS UNDER PLANE-STRESS CONDITIONS , 2000 .