Muller message-passing automata and logics
暂无分享,去创建一个
[1] Anca Muscholl,et al. A Kleene theorem and model checking algorithms for existentially bounded communicating automata , 2006, Inf. Comput..
[2] Anca Muscholl,et al. On the Complementation of Asynchronous Cellular Büchi Automata , 1996, Theor. Comput. Sci..
[3] Shlomo Vinner. A generalization of Ehrenfeucht’s game and some applications , 1972 .
[4] Jörg Flum,et al. Finite model theory , 1995, Perspectives in Mathematical Logic.
[5] Wolfgang Thomas,et al. Languages, Automata, and Logic , 1997, Handbook of Formal Languages.
[6] Leonid Libkin,et al. Elements Of Finite Model Theory (Texts in Theoretical Computer Science. An Eatcs Series) , 2004 .
[7] Benedikt Bollig,et al. Distributed Muller Automata and Logics , 2006 .
[8] J. Humphrys,et al. Beyond Words , 2006 .
[9] Paul Gastin,et al. Asynchronous cellular automata for pomsets , 2000, Theor. Comput. Sci..
[10] A. B. Slomson,et al. Generalized quantifiers and well orderings , 1972 .
[11] Anca Muscholl,et al. Deterministic asynchronous automata for infinite traces , 1993, Acta Informatica.
[12] Benedikt Bollig,et al. Message-passing automata are expressively equivalent to EMSO logic , 2006, Theor. Comput. Sci..
[13] Paul Gastin,et al. Asynchronous Cellular Automata for Infinite Traces , 1992, ICALP.
[14] Daniel Brand,et al. On Communicating Finite-State Machines , 1983, JACM.
[15] Benedikt Bollig,et al. Automata and logics for message sequence charts , 2005 .
[16] Dietrich Kuske,et al. Regular sets of infinite message sequence charts , 2003, Inf. Comput..
[17] Yaacov Choueka,et al. Theories of Automata on omega-Tapes: A Simplified Approach , 1974, J. Comput. Syst. Sci..
[18] Anca Muscholl,et al. Logical Definability on Infinite Traces , 1996, Theor. Comput. Sci..
[19] C. C. Elgot. Decision problems of finite automata design and related arithmetics , 1961 .
[20] Madhavan Mukund,et al. A theory of regular MSC languages , 2005, Inf. Comput..
[21] Leonid Libkin,et al. Elements of Finite Model Theory , 2004, Texts in Theoretical Computer Science.