Muller message-passing automata and logics

We study nonterminating message-passing automata whose behavior is described by infinite message sequence charts. As a first result, we show that Muller, Buchi, and termination-detecting Muller acceptance are equivalent for these devices. To describe the expressive power of these automata, we give a logical characterization. More precisely, we show that they have the same expressive power as the existential fragment of a monadic second-order logic featuring a first-order quantifier to express that there are infinitely many elements satisfying some property. This result is based on Vinner's extension of the classical Ehrenfeucht-Fraisse game to cope with the infinity quantifier.

[1]  Anca Muscholl,et al.  A Kleene theorem and model checking algorithms for existentially bounded communicating automata , 2006, Inf. Comput..

[2]  Anca Muscholl,et al.  On the Complementation of Asynchronous Cellular Büchi Automata , 1996, Theor. Comput. Sci..

[3]  Shlomo Vinner A generalization of Ehrenfeucht’s game and some applications , 1972 .

[4]  Jörg Flum,et al.  Finite model theory , 1995, Perspectives in Mathematical Logic.

[5]  Wolfgang Thomas,et al.  Languages, Automata, and Logic , 1997, Handbook of Formal Languages.

[6]  Leonid Libkin,et al.  Elements Of Finite Model Theory (Texts in Theoretical Computer Science. An Eatcs Series) , 2004 .

[7]  Benedikt Bollig,et al.  Distributed Muller Automata and Logics , 2006 .

[8]  J. Humphrys,et al.  Beyond Words , 2006 .

[9]  Paul Gastin,et al.  Asynchronous cellular automata for pomsets , 2000, Theor. Comput. Sci..

[10]  A. B. Slomson,et al.  Generalized quantifiers and well orderings , 1972 .

[11]  Anca Muscholl,et al.  Deterministic asynchronous automata for infinite traces , 1993, Acta Informatica.

[12]  Benedikt Bollig,et al.  Message-passing automata are expressively equivalent to EMSO logic , 2006, Theor. Comput. Sci..

[13]  Paul Gastin,et al.  Asynchronous Cellular Automata for Infinite Traces , 1992, ICALP.

[14]  Daniel Brand,et al.  On Communicating Finite-State Machines , 1983, JACM.

[15]  Benedikt Bollig,et al.  Automata and logics for message sequence charts , 2005 .

[16]  Dietrich Kuske,et al.  Regular sets of infinite message sequence charts , 2003, Inf. Comput..

[17]  Yaacov Choueka,et al.  Theories of Automata on omega-Tapes: A Simplified Approach , 1974, J. Comput. Syst. Sci..

[18]  Anca Muscholl,et al.  Logical Definability on Infinite Traces , 1996, Theor. Comput. Sci..

[19]  C. C. Elgot Decision problems of finite automata design and related arithmetics , 1961 .

[20]  Madhavan Mukund,et al.  A theory of regular MSC languages , 2005, Inf. Comput..

[21]  Leonid Libkin,et al.  Elements of Finite Model Theory , 2004, Texts in Theoretical Computer Science.