The behaviour of elastic surface waves polarized in a plane of material symmetry. III. Orthorhombic and cubic media
暂无分享,去创建一个
[1] P. Chadwick,et al. The behaviour of elastic surface waves polarized in a plane of material symmetry II. Monoclinic media , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.
[2] J. Lothe,et al. The behaviour of elastic surface waves polarized in a plane of material symmetry. I. Addendum , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.
[3] A. Norris,et al. CONDITIONS UNDER WHICH THE SLOWNESS SURFACE OF AN ANISOTROPIC ELASTIC MATERIAL IS THE UNION OF ALIGNED ELLIPSOIDS , 1990 .
[4] P. Chadwick. The behaviour of elastic surface waves polarized in a plane of material symmetry I. General analysis , 1990, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.
[5] T. Ting,et al. Explicit expressions of Barnett-Lothe tensors and their associated tensors for orthotropic materials , 1989 .
[6] P. Chadwick. Wave propagation in transversely isotropic elastic media - III. The special case a5 = 0 and the inextensible limit , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[7] P. Chadwick,et al. Wave propagation in transversely isotropic elastic media - II. Surface waves , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[8] P. Chadwick,et al. Wave propagation in transversely isotropic elastic media - I. Homogeneous plane waves , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[9] J. Lothe,et al. On the existence of type-6 transonic states in linear elastic media of cubic symmetry , 1987, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[10] D. Royer,et al. Rayleigh wave velocity and displacement in orthorhombic, tetragonal, hexagonal, and cubic crystals , 1984 .
[11] P. Chadwick,et al. Surface Waves in Cubic Elastic Materials , 1982 .
[12] M. Musgrave. On an elastodynamic classification of orthorhombic media , 1981, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[13] P. Chadwick,et al. Foundations of the Theory of Surface Waves in Anisotropic Elastic Materials , 1977 .
[14] P. Chadwick. The existence of pure surface modes in elastic materials with orthorhombic symmetry , 1976 .
[15] E. Höhne. Landolt‐Börnstein. Zahlenwerte und Funktionen aus Naturwissenschaften und Technik Neue Serie. Gruppe III: Kristall‐ und Festkörperphysik Band 5/a, b Strukturdaten organischer Kristalle E. Schudt, G. Weitz. Herausgeber: K.H. Hellwege und A.M. Hellwege Springer‐Verlag Berlin, Heidelberg, New York 1971 , 1971 .
[16] G. W. Farnell,et al. Properties of Elastic Surface Waves , 1970 .
[17] H. Barlow. Surface Waves , 1958, Proceedings of the IRE.
[18] R. D. Mindlin,et al. Waves on the Surface of a Crystal , 1957 .
[19] R. Stoneley,et al. The propagation of surface elastic waves in a cubic crystal , 1955, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.