The behaviour of elastic surface waves polarized in a plane of material symmetry. III. Orthorhombic and cubic media

The results obtained in part II for symmetric elastic surface waves in monoclinic media are specialized first to orthorhombic, then to cubic symmetry. A complete account is given of the configurations in which the S-tensors, and hence the surface-wave function and the secular equation, can be determined explicitly. The theoretical developments are complemented by extensive numerical computations, presented in the context of elastodynamic classifications of orthorhombic and cubic materials evolved by Musgrave and Chadwick & Smith respectively. The transitions between subsonic and supersonic surface-wave propagation encountered in part II recur in considerable abundance, but stand in a clear relationship to the classification only in the case of cubic media.

[1]  P. Chadwick,et al.  The behaviour of elastic surface waves polarized in a plane of material symmetry II. Monoclinic media , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[2]  J. Lothe,et al.  The behaviour of elastic surface waves polarized in a plane of material symmetry. I. Addendum , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[3]  A. Norris,et al.  CONDITIONS UNDER WHICH THE SLOWNESS SURFACE OF AN ANISOTROPIC ELASTIC MATERIAL IS THE UNION OF ALIGNED ELLIPSOIDS , 1990 .

[4]  P. Chadwick The behaviour of elastic surface waves polarized in a plane of material symmetry I. General analysis , 1990, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[5]  T. Ting,et al.  Explicit expressions of Barnett-Lothe tensors and their associated tensors for orthotropic materials , 1989 .

[6]  P. Chadwick Wave propagation in transversely isotropic elastic media - III. The special case a5 = 0 and the inextensible limit , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[7]  P. Chadwick,et al.  Wave propagation in transversely isotropic elastic media - II. Surface waves , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[8]  P. Chadwick,et al.  Wave propagation in transversely isotropic elastic media - I. Homogeneous plane waves , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[9]  J. Lothe,et al.  On the existence of type-6 transonic states in linear elastic media of cubic symmetry , 1987, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[10]  D. Royer,et al.  Rayleigh wave velocity and displacement in orthorhombic, tetragonal, hexagonal, and cubic crystals , 1984 .

[11]  P. Chadwick,et al.  Surface Waves in Cubic Elastic Materials , 1982 .

[12]  M. Musgrave On an elastodynamic classification of orthorhombic media , 1981, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[13]  P. Chadwick,et al.  Foundations of the Theory of Surface Waves in Anisotropic Elastic Materials , 1977 .

[14]  P. Chadwick The existence of pure surface modes in elastic materials with orthorhombic symmetry , 1976 .

[15]  E. Höhne Landolt‐Börnstein. Zahlenwerte und Funktionen aus Naturwissenschaften und Technik Neue Serie. Gruppe III: Kristall‐ und Festkörperphysik Band 5/a, b Strukturdaten organischer Kristalle E. Schudt, G. Weitz. Herausgeber: K.H. Hellwege und A.M. Hellwege Springer‐Verlag Berlin, Heidelberg, New York 1971 , 1971 .

[16]  G. W. Farnell,et al.  Properties of Elastic Surface Waves , 1970 .

[17]  H. Barlow Surface Waves , 1958, Proceedings of the IRE.

[18]  R. D. Mindlin,et al.  Waves on the Surface of a Crystal , 1957 .

[19]  R. Stoneley,et al.  The propagation of surface elastic waves in a cubic crystal , 1955, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.