Chaotic dynamics in biological information processing: Revisiting and revealing its logic (a mini-review).

The role of chaos in biological information processing has been established as an important breakthrough of nonlinear dynamics, after the early pioneering work of J.S. Nicolis and notably in neuroscience by the work of Walter J. Freeman and co-workers spanning more than three decades. In this work we revisit the subject and we further focus on novel results that reveal its underlying logical structure when faced with the cognition of ambiguous stimuli. We demonstrate, by utilizing a minimal model for apprehension and judgement related to Bayesian updating, that the fundamental characteristics of a biological processor obey in this case an extended, non-Boolean, logic which is characterized as a quantum logic. And we realize that in its essence the role of chaos in biological information processing accounts for, and is fully compatible with, the logic of “quantum cognition” in psychology and neuroscience.

[1]  Geoffrey E. Hinton,et al.  Reducing the Dimensionality of Data with Neural Networks , 2006, Science.

[2]  F. Arecchi,et al.  Cognition and Language: From Apprehension to Judgment -- Quantum Conjectures , 2014 .

[3]  H. Haken Principles of brain functioning , 1995 .

[4]  Emmanuel M. Pothos,et al.  decision theory A quantum probability explanation for violations of ' rational ' Supplementary data tml , 2009 .

[5]  Jerome R. Busemeyer,et al.  Quantum Models of Cognition and Decision , 2012 .

[6]  Vasileios Basios,et al.  Symbolic Dynamics, Coarse Graining and the Monitoring of Complex Systems , 2011, Int. J. Bifurc. Chaos.

[7]  Mark D. McDonnell,et al.  Suprathreshold stochastic resonance , 2009, Scholarpedia.

[8]  Zdzislaw Pawlak,et al.  Information systems theoretical foundations , 1981, Inf. Syst..

[9]  Andrei Khrennikov,et al.  Ubiquitous Quantum Structure: From Psychology to Finance , 2010 .

[10]  Ichiro Tsuda,et al.  A Complex Systems Approach to an Interpretation of Dynamic Brain Activity I: Chaotic Itinerancy Can Provide a Mathematical Basis for Information Processing in Cortical Transitory and Nonstationary Dynamics , 2003, Summer School on Neural Networks.

[11]  Ichiro Tsuda,et al.  Chaotic itinerancy , 2013, Scholarpedia.

[12]  Hermann Haken Self-organization of brain function , 2008, Scholarpedia.

[13]  C. Piron,et al.  On the Foundations of Quantum Physics , 1976 .

[14]  Kunihiko Kaneko,et al.  ISSUE : Chaotic Itinerancy Chaotic itinerancy , 2003 .

[15]  Vasileios Basios,et al.  Inverse Bayesian inference as a key of consciousness featuring a macroscopic quantum logical structure , 2017, Biosyst..

[16]  Asher Peres Bayesian Analysis of Bell Inequalities , 2000 .

[17]  Dov M. Gabbay,et al.  Handbook of Quantum Logic and Quantum Structures: Quantum Structures , 2007 .

[18]  Eugene M. Izhikevich,et al.  Which model to use for cortical spiking neurons? , 2004, IEEE Transactions on Neural Networks.

[19]  Ichiro Tsuda,et al.  Chaotic itinerancy and its roles in cognitive neurodynamics , 2015, Current Opinion in Neurobiology.

[20]  F. W. Lawvere,et al.  Sets for Mathematics , 2003 .

[21]  Bruce J. West,et al.  FRACTAL PHYSIOLOGY AND CHAOS IN MEDICINE , 1990 .

[22]  Diederik Aerts,et al.  Applications of Quantum Statistics in Psychological Studies of Decision Processes , 1995 .

[23]  B Katz,et al.  Quantal mechanism of neural transmitter release. , 1971, Science.

[24]  Jerome R Busemeyer,et al.  Can quantum probability provide a new direction for cognitive modeling? , 2013, The Behavioral and brain sciences.

[25]  Ichiro Tsuda,et al.  Hypotheses on the functional roles of chaotic transitory dynamics. , 2009, Chaos.

[26]  K. Ikeda,et al.  Maxwell-Bloch Turbulence , 1989 .

[27]  Vasileios Basios,et al.  Quantum cognition based on an ambiguous representation derived from a rough set approximation , 2014, Biosyst..

[28]  Walter J. Freeman,et al.  Neurodynamics: An Exploration in Mesoscopic Brain Dynamics , 2000, Perspectives in Neural Computing.

[29]  Theresa Beaubouef,et al.  Rough Sets , 2019, Lecture Notes in Computer Science.

[30]  John S. Nicholis Chaos and Information Processing: A Heuristic Outline , 1991 .

[31]  Celso Grebogi,et al.  Basin boundary metamorphoses: Changes in accessible boundary orbits☆ , 1987 .

[32]  R. Clewley,et al.  Key Bifurcations of Bursting Polyrhythms in 3-Cell Central Pattern Generators , 2013, PloS one.

[33]  Emmanuel Haven,et al.  Quantum probability and the mathematical modelling of decision-making , 2016, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[34]  Andrey Shilnikov,et al.  Blue-sky catastrophe , 2007, Scholarpedia.

[35]  L. Polkowski Rough Sets: Mathematical Foundations , 2013 .

[36]  Yukio-Pegio Gunji,et al.  Lattice Derived by Double Indiscernibility and Computational Complementarity , 2009, RSKT.

[37]  Adam Grabowski,et al.  Orthomodular Lattices , 2008, Formaliz. Math..

[38]  Hans-Jürgen Zimmermann,et al.  Fuzzy Set Theory - and Its Applications , 1985 .

[39]  Chris G. Antonopoulos,et al.  Chimera-like States in Modular Neural Networks , 2015, Scientific Reports.

[40]  Grégoire Nicolis,et al.  Foundations of Complex Systems: Emergence, Information and Prediction , 2012 .

[41]  A. Babloyantz,et al.  Low-dimensional chaos in an instance of epilepsy. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[42]  J. Neumann,et al.  The Logic of Quantum Mechanics , 1936 .

[43]  W. J. Freeman,et al.  CORTICAL PHASE TRANSITIONS, NONEQUILIBRIUM THERMODYNAMICS AND THE TIME-DEPENDENT GINZBURG–LANDAU EQUATION , 2011, 1110.3677.

[44]  D. Pincus,et al.  How Brains Make Up Their Minds , 2001 .

[45]  F Tito Arecchi,et al.  Phenomenology of Consciousness : from Apprehension to Judgment , 2010 .

[46]  Diederik Aerts,et al.  Quantum structure and human thought. , 2013, The Behavioral and brain sciences.

[47]  Robert Shaw Strange Attractors, Chaotic Behavior, and Information Flow , 1981 .

[48]  J. S. Nicolis,et al.  Non-Uniform Chaotic Dynamics with Implications to Information Processing , 1983 .

[49]  A. Farini,et al.  A test of multiple correlation temporal window characteristic of non-Markov processes , 2015, 1504.07089.

[50]  Yukio-Pegio Gunji,et al.  A Non-boolean Lattice Derived by Double Indiscernibility , 2010, Trans. Rough Sets.

[51]  H. Dishkant,et al.  Logic of Quantum Mechanics , 1976 .

[52]  Michael Schanz,et al.  CHAOS , INFORMATION PROCESSING AND PARADOXICAL GAMES The Legacy of , .

[53]  Geoffrey E. Hinton Deep belief networks , 2009, Scholarpedia.

[54]  Andrei Khrennikov,et al.  Can Quantum Information be Processed by Macroscopic Systems? , 2007, Quantum Inf. Process..

[55]  Diederik Aerts,et al.  Quantum Structure in Cognition , 2008, 0805.3850.

[56]  Edward T. Bullmore,et al.  Modular and Hierarchically Modular Organization of Brain Networks , 2010, Front. Neurosci..

[57]  Michael Bach,et al.  Ambiguous Figures – What Happens in the Brain When Perception Changes But Not the Stimulus , 2011, Front. Hum. Neurosci..

[58]  Diederik Aerts,et al.  Contextualizing concepts using a mathematical generalization of the quantum formalism , 2002, J. Exp. Theor. Artif. Intell..

[59]  W. Freeman Thermodynamics of Cerebral Cortex Assayed by Measures of Mass Action - eScholarship , 2014 .

[60]  Ichiro Tsuda,et al.  Chaotic dynamics of information processing: The “magic number seven plus-minus two” revisited , 1985 .

[61]  Diederik Aerts,et al.  Concepts and Their Dynamics: A Quantum-Theoretic Modeling of Human Thought , 2012, Top. Cogn. Sci..

[62]  G. Tian,et al.  Bayesian Missing Data Problems: EM, Data Augmentation and Noniterative Computation , 2009 .

[63]  F. Arecchi Physics of cognition: Complexity and creativity , 2007 .

[64]  John S. Nicolis,et al.  Dynamics of hierarchical systems - an evolutionary approach , 1986, Springer series in synergetics.

[65]  Andrey Shilnikov,et al.  Order parameter for bursting polyrhythms in multifunctional central pattern generators. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[66]  Karl Svozil,et al.  Randomness and undecidability in physics , 1993 .

[67]  I. Tsuda Toward an interpretation of dynamic neural activity in terms of chaotic dynamical systems. , 2001, The Behavioral and brain sciences.

[68]  Y. Gunji,et al.  Formal model of internal measurement: alternate changing between recursive definition and domain equation , 1997 .

[69]  Anastasiya E. Runnova,et al.  Experimental Study of Oscillatory Patterns in the Human Eeg During the Perception of Bistable Images , 2016 .

[70]  Brian A. Davey,et al.  An Introduction to Lattices and Order , 1989 .

[71]  H. Tong,et al.  Inversion of Bayes formula and measures of Bayesian information gain and pairwise dependence , 2011 .

[72]  Diederik Aerts,et al.  Quantum Structure in Cognition: Why and How Concepts Are Entangled , 2011, QI.

[73]  Andrzej Skowron,et al.  Knowledge Representation Techniques - A Rough Set Approach , 2006, Studies in Fuzziness and Soft Computing.

[74]  Andrey Shilnikov,et al.  Transition between tonic spiking and bursting in a neuron model via the blue-sky catastrophe. , 2005, Physical review letters.

[75]  F. W. Lawvere,et al.  Diagonal arguments and cartesian closed categories , 1969 .

[76]  Shoichi Kai,et al.  Noise-induced entrainment and stochastic resonance in human brain waves. , 2002, Physical review letters.