Post-Remediation Evaluation of EVO Treatment: How Can We Improve Performance

[1]  Janet G Hering,et al.  Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: implications for arsenic mobility. , 2003, Environmental science & technology.

[2]  J. Foster,et al.  When protons attack: microbial strategies of acid adaptation. , 1999, Current opinion in microbiology.

[3]  J. A. Davis,et al.  Modeling the movement of a pH perturbation and its impact on adsorbed zinc and phosphate in a wastewater‐contaminated aquifer , 2007 .

[4]  A. Stams,et al.  A highly purified enrichment culture couples the reductive dechlorination of tetrachloroethene to growth , 1993, Applied and environmental microbiology.

[5]  R. Borden,et al.  Transport of Edible Oil Emulsions in Clayey Sands: 3D Sandbox Results and Model Validation , 2006 .

[6]  Jine Jine Adaptation of a Dechlorinating Culture , KB ‐ 1 , to Acidic Environments , 2012 .

[7]  Aaron M. Weispfenning,et al.  A design tool for planning emulsified oil-injection systems , 2008 .

[8]  Yi Yang Exploring anaerobic reductive dechlorination at low pH environments , 2012 .

[9]  Min Liu,et al.  Soil Lime Requirement by Direct Titration with a Single Addition of Calcium Hydroxide , 2005 .

[10]  C. Radke,et al.  Flow mechanism of dilute, stable emulsions in porous media , 1984 .

[11]  A. Neumann,et al.  Isolation and characterization of Dehalospirillum multivorans gen. nov., sp. nov., a tetrachloroethene-utilizing, strictly anaerobic bacterium , 2004, Archives of Microbiology.

[12]  D. A. Barry,et al.  pH control for enhanced reductive bioremediation of chlorinated solvent source zones. , 2009, The Science of the total environment.

[13]  C. Woese,et al.  Isolation and characterization of Desulfitobacterium dehalogenans gen. nov., sp. nov., an anaerobic bacterium which reductively dechlorinates chlorophenolic compounds. , 1994, International journal of systematic bacteriology.

[14]  R. Borden,et al.  Transport of Edible Oil Emulsions in Clayey Sands: One-Dimensional Column Results and Model Development , 2006 .

[15]  Chenhao Jiang DEVELOPMENT OF ENRICHMENT CULTURES FOR ANAEROBIC REDUCTIVE DECHLORINATION OF TETRACHLOROETHENE UNDER LOW pH CONDITIONS , 2012 .

[16]  K. M. Ritalahti,et al.  Complete Detoxification of Vinyl Chloride by an Anaerobic Enrichment Culture and Identification of the Reductively Dechlorinating Population as a Dehalococcoides Species , 2003, Applied and Environmental Microbiology.

[17]  Ping Zhuang,et al.  Effect of temperature, pH and electron donor on the microbial reductive dechlorination of chloroalkenes , 1995 .

[18]  E. Bouwer,et al.  Bacterial deposition in porous media : Effects of cell-coating, substratum hydrophobicity, and electrolyte concentration , 1996 .

[19]  C. Condee,et al.  Large-scale production of bacterial consortia for remediation of chlorinated solvent-contaminated groundwater , 2009, Journal of Industrial Microbiology & Biotechnology.

[20]  D. Langmuir Aqueous Environmental Geochemistry , 1997 .

[21]  M. Bradbury,et al.  A mechanistic description of Ni and Zn sorption on Na-montmorillonite Part II: modelling , 1997 .

[22]  Menachem Elimelech,et al.  Colloid mobilization and transport in groundwater , 1996 .

[23]  W. Ludwig,et al.  Dehalobacter restrictus gen. nov. and sp. nov., a strictly anaerobic bacterium that reductively dechlorinates tetra- and trichloroethene in an anaerobic respiration , 1998, Archives of Microbiology.

[24]  C. Woese,et al.  Desulfomonile tiedjei gen. nov. and sp. nov., a novel anaerobic, dehalogenating, sulfate-reducing bacterium , 1990, Archives of Microbiology.

[25]  T. Sale,et al.  Effects of reduced contaminant loading on downgradient water quality in an idealized two-layer granular porous media. , 2008, Journal of contaminant hydrology.

[26]  J. Drever,et al.  The Geochemistry of Natural Waters: Surface and Groundwater Environments , 1997 .

[27]  R. Borden,et al.  Rate and Extent of Chlorinated Ethene Removal at 37 ERD Sites , 2017 .

[28]  R. J. Bartlett,et al.  Soil pH buffering revisited , 1985 .

[29]  R. Borden,et al.  Enhanced anaerobic bioremediation of a TCE source at the Tarheel Army Missile Plant using EOS , 2007 .

[30]  S. J. Flynn,et al.  Characterization of Two Tetrachloroethene-Reducing, Acetate-Oxidizing Anaerobic Bacteria and Their Description as Desulfuromonas michiganensis sp. nov , 2003, Applied and Environmental Microbiology.

[31]  R. Aitken,et al.  The effect of valence and ionic strength on the measurement of pH buffer capacity , 1994 .

[32]  R. Borden,et al.  Numerical Modeling of Emulsified Oil Distribution in Heterogeneous Aquifers , 2009, Ground water.

[33]  Robert C Borden,et al.  Impact of edible oil injection on the permeability of aquifer sands. , 2004, Journal of contaminant hydrology.

[34]  A. Spormann,et al.  Molecular Identification of the Catabolic Vinyl Chloride Reductase from Dehalococcoides sp. Strain VS and Its Environmental Distribution , 2004, Applied and Environmental Microbiology.

[35]  P. Bedient,et al.  Evaluation of Long‐Term Performance and Sustained Treatment at Enhanced Anaerobic Bioremediation Sites , 2016 .

[36]  C. H. Ward,et al.  IN SITU Bioremediation Of Chlorinated Ethene Source Zones , 2014 .

[37]  W. D. de Vos,et al.  Description of Sulfurospirillum halorespirans sp. nov., an anaerobic, tetrachloroethene-respiring bacterium, and transfer of Dehalospirillum multivorans to the genus Sulfurospirillum as Sulfurospirillum multivorans comb. nov. , 2003, International journal of systematic and evolutionary microbiology.

[38]  Menachem Elimelech,et al.  Dynamics of Colloid Deposition in Porous Media: Blocking Based on Random Sequential Adsorption , 1995 .

[39]  T. Vogel,et al.  Biotransformation of tetrachloroethylene to trichloroethylene, dichloroethylene, vinyl chloride, and carbon dioxide under methanogenic conditions , 1985, Applied and environmental microbiology.

[40]  F. Aulenta,et al.  Enhanced anaerobic bioremediation of chlorinated solvents: environmental factors influencing microbial activity and their relevance under field conditions , 2006 .

[41]  P. Mccarty,et al.  Chemistry for environmental engineering , 1978 .

[42]  R. Borden Effective distribution of emulsified edible oil for enhanced anaerobic bioremediation. , 2007, Journal of contaminant hydrology.

[43]  Arlen W. Harbaugh,et al.  MODFLOW-2000, The U.S. Geological Survey Modular Ground-Water Model - User Guide to Modularization Concepts and the Ground-Water Flow Process , 2000 .

[44]  P. Kitanidis,et al.  Electron donor and pH relationships for biologically enhanced dissolution of chlorinated solvent DNAPL in groundwater , 2007 .

[45]  C. Schadt,et al.  U(VI) bioreduction with emulsified vegetable oil as the electron donor--model application to a field test. , 2013, Environmental science & technology.

[46]  Michael J. Truex,et al.  THE SCENARIOS APPROACH TO ATTENUATION-BASED REMEDIES FOR INORGANIC AND RADIONUCLIDE CONTAMINANTS , 2011 .

[47]  C. Cervantes,et al.  Microbial interactions with aluminium , 1996, Biometals.

[48]  L. Krumholz Desulfuromonas chloroethenica sp. nov. Uses Tetrachloroethylene and Trichloroethylene as Electron Acceptors , 1997 .

[49]  C. Holliger,et al.  Isolation and characterization of Tn-Dha1, a transposon containing the tetrachloroethene reductive dehalogenase of Desulfitobacterium hafniense strain TCE1. , 2005, Environmental microbiology.

[50]  E. Edwards,et al.  Comparison of anaerobic dechlorinating enrichment cultures maintained on tetrachloroethene, trichloroethene, cis-dichloroethene and vinyl chloride. , 2002, Water Research.

[51]  James A. Davis,et al.  Modeling the influence of variable pH on the transport of zinc in a contaminated aquifer using semiempirical surface complexation models , 2000 .

[52]  L. Krumholz,et al.  A freshwater anaerobe coupling acetate oxidation to tetrachloroethylene dehalogenation , 1996, Applied and environmental microbiology.

[53]  J. Zeikus,et al.  Biology, ecology, and biotechnological applications of anaerobic bacteria adapted to environmental stresses in temperature, pH, salinity, or substrates. , 1993, Microbiological reviews.

[54]  R. Borden Concurrent bioremediation of perchlorate and 1,1,1-trichloroethane in an emulsified oil barrier. , 2007, Journal of contaminant hydrology.

[55]  R. Borden,et al.  Enhanced reductive dechlorination in columns treated with edible oil emulsion. , 2006, Journal of contaminant hydrology.

[56]  B. Looney,et al.  TREATABILITY STUDY FOR EDIBLE OIL DEPLOYMENT FOR ENHANCED CVOC ATTENUATION FOR T-AREA, SAVANNAH RIVER SITE , 2012 .

[57]  R. Borden,et al.  Enhanced reductive dechlorination of tetrachloroethene dense nonaqueous phase liquid with EVO and Mg(OH)2. , 2014, Environmental science & technology.

[58]  J. Tiedje,et al.  Microbial reductive dehalogenation. , 1992, Microbiological reviews.

[59]  S. Zinder,et al.  Reductive dechlorination of cis-1,2-dichloroethene and vinyl chloride by "Dehalococcoides ethenogenes". , 2001, Environmental science & technology.

[60]  A. Neumann,et al.  Tetrachloroethene metabolism of Dehalospirillum multivorans , 1994, Archives of Microbiology.

[61]  B. Ahring,et al.  Effects of lipids on thermophilic anaerobic digestion and reduction of lipid inhibition upon addition of bentonite , 1990, Applied Microbiology and Biotechnology.

[62]  R. Sanford,et al.  Geobacter lovleyi sp. nov. Strain SZ, a Novel Metal-Reducing and Tetrachloroethene-Dechlorinating Bacterium , 2006, Applied and Environmental Microbiology.

[63]  E. Bouwer,et al.  Bacterial Deposition in Porous Media Related to the Clean Bed Collision Efficiency and to Substratum Blocking by Attached Cells , 1996 .

[64]  George R. Helz,et al.  Aquatic chemistry—An introduction emphasizing chemical equilibria in natural waters: By Werner Stumm and James J. Morgan. Second Edition, John Wiley and Sons, 1981, 780 pp. $45.00 (cloth), $27.50 (paper) , 1982 .

[65]  Natalie L. Cápiro,et al.  Organohalide Respiration with Chlorinated Ethenes under Low pH Conditions. , 2017, Environmental science & technology.

[66]  K. M. Ritalahti,et al.  Quantitative PCR Confirms Purity of Strain GT, a Novel Trichloroethene-to-Ethene-Respiring Dehalococcoides Isolate , 2006, Applied and Environmental Microbiology.

[67]  D. L. Parkhurst,et al.  Reactive-Transport Simulation of Phosphorus in the Sewage Plume at the Massachusetts Military Reservation, Cape Cod, Massachusetts , 2003 .

[68]  P. Adriaens,et al.  Comparison of Eh and H2 Measurements for Delineating Redox Processes in a Contaminated Aquifer , 1996 .

[69]  C. Schadt,et al.  U(VI) bioreduction with emulsified vegetable oil as the electron donor--microcosm tests and model development. , 2013, Environmental science & technology.

[70]  G. Hornberger,et al.  Effect of surface coatings, grain size, and ionic strength on the maximum attainable coverage of bacteria on sand surfaces. , 2001, Journal of contaminant hydrology.

[71]  K. Konstantinidis,et al.  Dehalococcoides mccartyi gen. nov., sp. nov., obligately organohalide-respiring anaerobic bacteria relevant to halogen cycling and bioremediation, belong to a novel bacterial class, Dehalococcoidia classis nov., order Dehalococcoidales ord. nov. and family Dehalococcoidaceae fam. nov., within the ph , 2013, International journal of systematic and evolutionary microbiology.

[72]  J. Damborský,et al.  Tetrachloroethene-dehalogenating bacteria , 2008, Folia Microbiologica.

[73]  Clayton J. Radke,et al.  A filtration model for the flow of dilute, stable emulsions in porous media. II: Parameter evaluation and estimation , 1986 .

[74]  C. Schadt,et al.  In situ bioremediation of uranium with emulsified vegetable oil as the electron donor. , 2013, Environmental science & technology.

[75]  Yi Yang Bioremediation of Chlorinated Ethenes: pH Effects, Novel Dechlorinators and Decision-Making Tools , 2016 .

[76]  D. Kent,et al.  Application of the Surface Complexation Concept to Complex Mineral Assemblages , 1998 .

[77]  J. A. Davis,et al.  Surface complexation modeling in aqueous geochemistry , 1990 .

[78]  P. Lawson,et al.  Desulfitobacterium sp. strain PCE1, an anaerobic bacterium that can grow by reductive dechlorination of tetrachloroethene or ortho-chlorinated phenols , 1996, Archives of Microbiology.