Hybridization of the multi-objective evolutionary algorithms and the gradient-based algorithms

It is known from single-objective optimization that hybrid variants of local search algorithms and evolutionary algorithms can outperform their pure counterparts. This holds, in particular, in continuous search spaces and for differentiable fitness functions. The same should be true in multiobjective optimization. An efficient gradient-based local algorithm, sequential quadratic programming (SQP) is combined with two well-known multiobjective evolutionary algorithms, strength Pareto evolutionary algorithm (SPEA) and nondominated sorting genetic algorithm (NSGA-II) respectively, by means of a modified /spl epsiv/-constraint method. The resulting two hybrid algorithms demonstrate great success over two sets of well-chosen functions regarding the convergence rate. In addition, from the simulation studies, the hybridization approach also enhances, at least does not ruin, the diversity of the solutions.

[1]  L. Lasdon,et al.  On a bicriterion formation of the problems of integrated system identification and system optimization , 1971 .

[2]  T. M. Williams,et al.  Practical Methods of Optimization. Vol. 1: Unconstrained Optimization , 1980 .

[3]  Philip E. Gill,et al.  Practical optimization , 1981 .

[4]  J. D. Schaffer,et al.  Some experiments in machine learning using vector evaluated genetic algorithms (artificial intelligence, optimization, adaptation, pattern recognition) , 1984 .

[5]  K. Schittkowski NLPQL: A fortran subroutine solving constrained nonlinear programming problems , 1986 .

[6]  David E. Goldberg,et al.  Genetic Algorithms with Sharing for Multimodalfunction Optimization , 1987, ICGA.

[7]  R. Fletcher Practical Methods of Optimization , 1988 .

[8]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[9]  C. Fonseca,et al.  GENETIC ALGORITHMS FOR MULTI-OBJECTIVE OPTIMIZATION: FORMULATION, DISCUSSION, AND GENERALIZATION , 1993 .

[10]  Kalyanmoy Deb,et al.  MULTI-OBJECTIVE FUNCTION OPTIMIZATION USING NON-DOMINATED SORTING GENETIC ALGORITHMS , 1994 .

[11]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[12]  S. Ranjithan,et al.  Using genetic algorithms to solve a multiple objective groundwater pollution containment problem , 1994 .

[13]  David E. Goldberg,et al.  A niched Pareto genetic algorithm for multiobjective optimization , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[14]  Mitsuo Gen,et al.  Genetic algorithms and engineering design , 1997 .

[15]  Lothar Thiele,et al.  An evolutionary algorithm for multiobjective optimization: the strength Pareto approach , 1998 .

[16]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[17]  Kalyanmoy Deb,et al.  A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Optimisation: NSGA-II , 2000, PPSN.

[18]  Martin J. Oates,et al.  The Pareto Envelope-Based Selection Algorithm for Multi-objective Optimisation , 2000, PPSN.

[19]  David W. Corne,et al.  Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy , 2000, Evolutionary Computation.

[20]  S. Ranji Ranjithan,et al.  Constraint Method-Based Evolutionary Algorithm (CMEA) for Multiobjective Optimization , 2001, EMO.

[21]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .

[22]  Kalyanmoy Deb,et al.  Controlled Elitist Non-dominated Sorting Genetic Algorithms for Better Convergence , 2001, EMO.

[23]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[24]  Jonathan E. Fieldsend,et al.  Using unconstrained elite archives for multiobjective optimization , 2003, IEEE Trans. Evol. Comput..