Elastic-relaxation-induced barrier layer thickness undulations in InP/GaAs type-II quantum well superlattice structures
暂无分享,去创建一个
S. M. Oak | A. Srivastava | Ravi K. Kumar | T. Sharma | C. Mukherjee | T. Ganguli | P. Mondal | S. D. Singh | Pushpen Mondal | Ravi Kumar | A. Srivastava | S. Singh
[1] I. I. Zasavitskii,et al. Active-region designs in quantum cascade lasers , 2012 .
[2] S. M. Oak,et al. Effect of built-in electric field on the temperature dependence of transition energy for InP/GaAs type-II superlattices , 2011 .
[3] S. M. Oak,et al. Conduction band offset and quantum states probed by capacitance–voltage measurements for InP/GaAs type-II ultrathin quantum wells , 2011 .
[4] J. Lee,et al. New cubic Cd1−xMnxS epilayers grown on GaAs (100) substrates by hot-wall epitaxy , 2010 .
[5] S. M. Oak,et al. Temperature dependence of the photoluminescence from InP/GaAs type-II ultrathin quantum wells , 2010 .
[6] S. M. Oak,et al. Observation of electron confinement in InP/GaAs type-II ultrathin quantum wells , 2010 .
[7] V. Moshchalkov,et al. Extended excitons and compact heliumlike biexcitons in type-II quantum dots. , 2009, 0910.4290.
[8] S. M. Oak,et al. Compositional dependence of the bowing parameter for highly strained InGaAs/GaAs quantum wells , 2009 .
[9] R. Magalhães-Paniago,et al. Structural and optical properties of InP quantum dots grown on GaAs(001) , 2007 .
[10] G. Medeiros-Ribeiro,et al. Aharonov-Bohm signature for neutral polarized excitons in type-II quantum dot ensembles. , 2003, Physical review letters.
[11] K. Regiński,et al. Strain release in InGaAs/InxAl1−xAs/InP heterostructures , 2003 .
[12] Yajun Wei,et al. Type II InAs/GaSb superlattice photovoltaic detectors with cutoff wavelength approaching 32 μm , 2002 .
[13] A. Stintz,et al. Morphology and relaxation in InyGa1−yAs/GaAs multi-layer structures , 2001 .
[14] S. Chua,et al. Growth and optical properties of type-II InP/GaAs self-organized quantum dots , 2001 .
[15] H. Sugiura,et al. Effect of strain in the barrier layer on structural and optical properties of highly strained In0.77Ga0.23As/InGaAs multiple quantum wells , 2000 .
[16] P. Desjardins,et al. Competing strain relaxation mechanisms in organometallic vapor-phase epitaxy of strain-compensated GaInP/InAsP multilayers on InP(001) , 1998 .
[17] H. Sunamura,et al. New strain-relieving microstructure in pure-Ge/Si short-period superlattices , 1998 .
[18] V. A. Karasyuk,et al. ORIGIN OF SHARP LINES IN PHOTOLUMINESCENCE EMISSION FROM SUBMONOLAYERS OF INAS IN GAAS , 1997 .
[19] R. Masut,et al. Atomic layer epitaxy and structural characterization of InP and InAs/InP heterostructures , 1994 .
[20] C. Wang,et al. Critical layer thickness of strained-layer InGaAs/GaAs multiple quantum wells determined by double-crystal x-ray diffraction , 1993 .
[21] Graham,et al. Optical and structural properties of metalorganic-vapor-phase-epitaxy-grown InAs quantum wells and quantum dots in InP. , 1993, Physical review. B, Condensed matter.
[22] H. Asahi,et al. Gas source molecular beam epitaxy growth of short period GaP/AlP(001) superlattices , 1991 .
[23] M. Cardona,et al. Structural and vibrational properties of (InAs)m(GaAs)n strained superlattices grown by molecular beam epitaxy , 1991 .