The Metric Nearness Problem
暂无分享,去创建一个
Inderjit S. Dhillon | Suvrit Sra | Joel A. Tropp | Justin Brickell | J. Tropp | I. Dhillon | S. Sra | Justin Brickell
[1] W. H. Day. Computational complexity of inferring phylogenies from dissimilarity matrices. , 1987, Bulletin of mathematical biology.
[2] Joachim M. Buhmann,et al. Going Metric: Denoising Pairwise Data , 2002, NIPS.
[3] Piotr Indyk,et al. Sublinear time algorithms for metric space problems , 1999, STOC '99.
[4] C. Greg Plaxton,et al. The Online Median Problem , 1999, SIAM J. Comput..
[5] Graham K. Rand,et al. Quantitative Applications in the Social Sciences , 1983 .
[6] Thomas H. Cormen,et al. Introduction to algorithms [2nd ed.] , 2001 .
[7] Kenneth Steiglitz,et al. Combinatorial Optimization: Algorithms and Complexity , 1981 .
[8] Y. Censor,et al. Parallel Optimization:theory , 1997 .
[9] Paul Tseng,et al. Dual coordinate ascent methods for non-strictly convex minimization , 1993, Math. Program..
[10] Claire Mathieu,et al. A Randomized Approximation Scheme for Metric MAX-CUT , 2001, J. Comput. Syst. Sci..
[11] N. Higham. MATRIX NEARNESS PROBLEMS AND APPLICATIONS , 1989 .
[12] Andrzej Stachurski,et al. Parallel Optimization: Theory, Algorithms and Applications , 2000, Parallel Distributed Comput. Pract..
[13] R. Steele. Optimization , 2005 .
[14] Inderjit S. Dhillon,et al. Triangle Fixing Algorithms for the Metric Nearness Problem , 2004, NIPS.
[15] Mihalis Yannakakis,et al. Optimization, approximation, and complexity classes , 1991, STOC '88.
[16] 丸山 徹. Convex Analysisの二,三の進展について , 1977 .
[17] Piotr Indyk. A sublinear time approximation scheme for clustering in metric spaces , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).
[18] J. Gower. Properties of Euclidean and non-Euclidean distance matrices , 1985 .
[19] I. J. Schoenberg. Remarks to Maurice Frechet's Article ``Sur La Definition Axiomatique D'Une Classe D'Espace Distances Vectoriellement Applicable Sur L'Espace De Hilbert , 1935 .
[20] Joachim M. Buhmann,et al. Optimal Cluster Preserving Embedding of Nonmetric Proximity Data , 2003, IEEE Trans. Pattern Anal. Mach. Intell..
[21] Carsten Lund,et al. Proof verification and hardness of approximation problems , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.
[22] Dana Ron,et al. Testing metric properties , 2003, Inf. Comput..
[23] O. Mangasarian. Normal solutions of linear programs , 1984 .
[24] Michael S Lewis-Beck,et al. Sage university papers. Series Quantitative applications in the social sciences , 2008 .
[25] Phipps Arabie,et al. The Representation of Symmetric Proximity Data: Dimensions and Classifications , 1998, Comput. J..
[26] Klaus-Robert Müller,et al. Feature Discovery in Non-Metric Pairwise Data , 2004, J. Mach. Learn. Res..