Recent Advancements in Polymer-Based Composite Electrolytes for Rechargeable Lithium Batteries

[1]  Yang Zhao,et al.  Gel Polymer Electrolytes for Electrochemical Energy Storage , 2018 .

[2]  Li-zhen Fan,et al.  3D Fiber-Network-Reinforced Bicontinuous Composite Solid Electrolyte for Dendrite-free Lithium Metal Batteries. , 2018, ACS applied materials & interfaces.

[3]  Yu-Guo Guo,et al.  Lithiation-Derived Repellent toward Lithium Anode Safeguard in Quasi-solid Batteries , 2018 .

[4]  Yifu Yang,et al.  Co-polymerization and blending based PEO/PMMA/P(VDF-HFP) gel polymer electrolyte for rechargeable lithium metal batteries , 2018 .

[5]  Hong‐Jie Peng,et al.  Artificial Soft–Rigid Protective Layer for Dendrite‐Free Lithium Metal Anode , 2018 .

[6]  David E.J. Armstrong,et al.  Hybrid electrolytes with 3D bicontinuous ordered ceramic and polymer microchannels for all-solid-state batteries , 2018 .

[7]  Ya‐Xia Yin,et al.  Dendrite-Free Li-Metal Battery Enabled by a Thin Asymmetric Solid Electrolyte with Engineered Layers. , 2018, Journal of the American Chemical Society.

[8]  Ya‐Xia Yin,et al.  In-situ plasticized polymer electrolyte with double-network for flexible solid-state lithium-metal batteries , 2018 .

[9]  Junjie Bao,et al.  A promising TPU/PEO blend polymer electrolyte for all-solid-state lithium ion batteries , 2017 .

[10]  Jaephil Cho,et al.  Feasibility of Cathode Surface Coating Technology for High‐Energy Lithium‐ion and Beyond‐Lithium‐ion Batteries , 2017, Advanced materials.

[11]  T. Kyu,et al.  Effect of Side-Chain Branching on Enhancement of Ionic Conductivity and Capacity Retention of a Solid Copolymer Electrolyte Membrane. , 2017, Langmuir : the ACS journal of surfaces and colloids.

[12]  D. Mecerreyes,et al.  Preparation and characterization of gel polymer electrolytes using poly(ionic liquids) and high lithium salt concentration ionic liquids , 2017 .

[13]  L. M. Rodriguez-Martinez,et al.  New Single Ion Conducting Blend Based on PEO and PA-LiTFSI , 2017 .

[14]  Bingbing Chen,et al.  Two Players Make a Formidable Combination: In Situ Generated Poly(acrylic anhydride-2-methyl-acrylic acid-2-oxirane-ethyl ester-methyl methacrylate) Cross-Linking Gel Polymer Electrolyte toward 5 V High-Voltage Batteries. , 2017, ACS applied materials & interfaces.

[15]  Ru‐Shi Liu,et al.  Recent Advancements in Li-Ion Conductors for All-Solid-State Li-Ion Batteries , 2017 .

[16]  Yanfei Liang,et al.  A Newly Designed Composite Gel Polymer Electrolyte Based on Poly(Vinylidene Fluoride-Hexafluoropropylene) (PVDF-HFP) for Enhanced Solid-State Lithium-Sulfur Batteries. , 2017, Chemistry.

[17]  Guang Yang,et al.  Dumbbell-Shaped Octasilsesquioxanes Functionalized with Ionic Liquids as Hybrid Electrolytes for Lithium Metal Batteries , 2017 .

[18]  Rui Zhang,et al.  An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes , 2017, Proceedings of the National Academy of Sciences.

[19]  Yang Shen,et al.  Synergistic Coupling between Li6.75La3Zr1.75Ta0.25O12 and Poly(vinylidene fluoride) Induces High Ionic Conductivity, Mechanical Strength, and Thermal Stability of Solid Composite Electrolytes. , 2017, Journal of the American Chemical Society.

[20]  Jong‐Chan Lee,et al.  2D boron nitride nanoflakes as a multifunctional additive in gel polymer electrolytes for safe, long cycle life and high rate lithium metal batteries , 2017 .

[21]  Yan‐Bing He,et al.  A dual-functional gel-polymer electrolyte for lithium ion batteries with superior rate and safety performances , 2017 .

[22]  Yi‐Chun Lu,et al.  A stable lithium–selenium interface via solid/liquid hybrid electrolytes: Blocking polyselenides and suppressing lithium dendrite , 2017 .

[23]  Jie Gao,et al.  A Sandwich PVDF/HEC/PVDF Gel Polymer Electrolyte for Lithium Ion Battery , 2017 .

[24]  J. Chai,et al.  High Performance Solid Polymer Electrolytes for Rechargeable Batteries: A Self‐Catalyzed Strategy toward Facile Synthesis , 2017, Advanced science.

[25]  Hui Pan,et al.  Cross-linking of polymer and ionic liquid as high-performance gel electrolyte for flexible solid-state supercapacitors , 2017 .

[26]  Kun Fu,et al.  Three-dimensional bilayer garnet solid electrolyte based high energy density lithium metal–sulfur batteries , 2017 .

[27]  Yang Zheng,et al.  Atomic Interface Engineering and Electric‐Field Effect in Ultrathin Bi2MoO6 Nanosheets for Superior Lithium Ion Storage , 2017, Advanced materials.

[28]  Candace K. Chan,et al.  Composite Polymer Electrolytes with Li7La3Zr2O12 Garnet-Type Nanowires as Ceramic Fillers: Mechanism of Conductivity Enhancement and Role of Doping and Morphology. , 2017, ACS applied materials & interfaces.

[29]  Yimeng Wang,et al.  One-step radiation synthesis of gel polymer electrolytes with high ionic conductivity for lithium-ion batteries , 2017 .

[30]  Meike Schneider,et al.  Electrochemical performance of a solvent-free hybrid ceramic-polymer electrolyte based on Li7La3Zr2O12 in P(EO)15LiTFSI , 2017 .

[31]  J. Nan,et al.  Self-supported PVdF/P(VC-VAc) blended polymer electrolytes for LiNi0.5Mn1.5O4/Li batteries , 2017 .

[32]  J. Chai,et al.  An interpenetrating network poly(diethylene glycol carbonate)-based polymer electrolyte for solid state lithium batteries , 2017 .

[33]  Jyotirmoy Mandal,et al.  A Flexible Solid Composite Electrolyte with Vertically Aligned and Connected Ion-Conducting Nanoparticles for Lithium Batteries. , 2017, Nano letters.

[34]  Yet-Ming Chiang,et al.  Compliant Yet Brittle Mechanical Behavior of Li2S–P2S5 Lithium‐Ion‐Conducting Solid Electrolyte , 2017 .

[35]  J. Muldoon,et al.  Inorganic–organic layer by layer hybrid membranes for lithium–sulfur batteries , 2017 .

[36]  Dingchang Lin,et al.  Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires , 2017, Nature Energy.

[37]  Yan‐Bing He,et al.  Dendrite‐Free, High‐Rate, Long‐Life Lithium Metal Batteries with a 3D Cross‐Linked Network Polymer Electrolyte , 2017, Advanced materials.

[38]  K. Ito,et al.  Ion-Conductive and Elastic Slide-Ring Gel Li Electrolytes Swollen with Ionic Liquid , 2017 .

[39]  Xingguo Qi,et al.  In situ synthesis of hierarchical poly(ionic liquid)-based solid electrolytes for high-safety lithium-ion and sodium-ion batteries , 2017 .

[40]  Y. Mai,et al.  Constructing desirable ion-conducting channels within ionic liquid-based composite polymer electrolytes by using polymeric ionic liquid-functionalized 2D mesoporous silica nanoplates , 2017 .

[41]  David P. Wilkinson,et al.  Recent advances in all-solid-state rechargeable lithium batteries , 2017 .

[42]  Yi Cui,et al.  Reviving the lithium metal anode for high-energy batteries. , 2017, Nature nanotechnology.

[43]  Arumugam Manthiram,et al.  Lithium battery chemistries enabled by solid-state electrolytes , 2017 .

[44]  L. M. Rodriguez-Martinez,et al.  Single lithium-ion conducting solid polymer electrolytes: advances and perspectives. , 2017, Chemical Society Reviews.

[45]  Henghui Xu,et al.  Hybrid Polymer/Garnet Electrolyte with a Small Interfacial Resistance for Lithium-Ion Batteries. , 2017, Angewandte Chemie.

[46]  A. Sharma,et al.  Polymer electrolytes for lithium ion batteries: a critical study , 2017, Ionics.

[47]  Chaojiang Niu,et al.  Thermal Induced Strain Relaxation of 1D Iron Oxide for Solid Electrolyte Interphase Control and Lithium Storage Improvement , 2017 .

[48]  Ya‐Xia Yin,et al.  Reshaping Lithium Plating/Stripping Behavior via Bifunctional Polymer Electrolyte for Room-Temperature Solid Li Metal Batteries. , 2016, Journal of the American Chemical Society.

[49]  M. Armand,et al.  Cross-Linked Solid Polymer Electrolyte for All-Solid-State Rechargeable Lithium Batteries , 2016 .

[50]  Dong Wook Kim,et al.  Semi-interpenetrating solid polymer electrolyte based on thiol-ene cross-linker for all-solid-state lithium batteries , 2016 .

[51]  Dingchang Lin,et al.  Improved Lithium Ionic Conductivity in Composite Polymer Electrolytes with Oxide-Ion Conducting Nanowires. , 2016, ACS nano.

[52]  B. Scrosati,et al.  Challenges and prospects of the role of solid electrolytes in the revitalization of lithium metal batteries , 2016 .

[53]  Peng Long,et al.  High-Energy All-Solid-State Lithium Batteries with Ultralong Cycle Life. , 2016, Nano letters.

[54]  Kevin N. Wood,et al.  Dendrites and Pits: Untangling the Complex Behavior of Lithium Metal Anodes through Operando Video Microscopy , 2016, ACS central science.

[55]  Miao Zhang,et al.  Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: Dispersion of garnet nanoparticles in insulating polyethylene oxide , 2016 .

[56]  Jun Ma,et al.  All solid-state polymer electrolytes for high-performance lithium ion batteries , 2016 .

[57]  Y. Qi,et al.  Computational Exploration of the Li-Electrode|Electrolyte Interface in the Presence of a Nanometer Thick Solid-Electrolyte Interphase Layer. , 2016, Accounts of chemical research.

[58]  Mingxue Tang,et al.  Lithium Ion Pathway within Li7La3Zr2O12‐Polyethylene Oxide Composite Electrolytes , 2016 .

[59]  Mingxue Tang,et al.  Lithium Ion Pathway within Li7 La3 Zr2 O12 -Polyethylene Oxide Composite Electrolytes. , 2016, Angewandte Chemie.

[60]  Martin Z. Bazant,et al.  Transition of lithium growth mechanisms in liquid electrolytes , 2016 .

[61]  Jürgen Janek,et al.  A solid future for battery development , 2016, Nature Energy.

[62]  Shaofei Wang,et al.  Plating a Dendrite-Free Lithium Anode with a Polymer/Ceramic/Polymer Sandwich Electrolyte. , 2016, Journal of the American Chemical Society.

[63]  L. Archer,et al.  Structure–property study of cross-linked hydrocarbon/poly(ethylene oxide) electrolytes with superior conductivity and dendrite resistance† †Electronic supplementary information (ESI) available: Synthetic procedures, characterization data, electrochemical impedance spectra and additional SEM images. , 2016, Chemical science.

[64]  L. Archer,et al.  Stabilizing electrodeposition in elastic solid electrolytes containing immobilized anions , 2016, Science Advances.

[65]  Joon Ching Juan,et al.  A review of polymer electrolytes: fundamental, approaches and applications , 2016, Ionics.

[66]  Yibo Wang,et al.  Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries , 2016, Proceedings of the National Academy of Sciences.

[67]  C. Hsieh,et al.  Immobilization of Anions on Polymer Matrices for Gel Electrolytes with High Conductivity and Stability in Lithium Ion Batteries. , 2016, ACS applied materials & interfaces.

[68]  Li-ping Zhu,et al.  Surface zwitterionicalization of poly(vinylidene fluoride) membranes from the entrapped reactive core-shell silica nanoparticles. , 2016, Journal of colloid and interface science.

[69]  Satoshi Hori,et al.  High-power all-solid-state batteries using sulfide superionic conductors , 2016, Nature Energy.

[70]  Wolfgang G. Zeier,et al.  Direct Observation of the Interfacial Instability of the Fast Ionic Conductor Li10GeP2S12 at the Lithium Metal Anode , 2016 .

[71]  Shiping Zhu,et al.  Employing gradient copolymer to achieve gel polymer electrolytes with high ionic conductivity , 2016 .

[72]  Federico Bella,et al.  Thermally cured semi-interpenetrating electrolyte networks (s-IPN) for safe and aging-resistant secondary lithium polymer batteries , 2016 .

[73]  Heng Zhang,et al.  Single Lithium-Ion Conducting Polymer Electrolytes Based on a Super-Delocalized Polyanion. , 2016, Angewandte Chemie.

[74]  Wei Liu,et al.  High Ionic Conductivity of Composite Solid Polymer Electrolyte via In Situ Synthesis of Monodispersed SiO2 Nanospheres in Poly(ethylene oxide). , 2016, Nano letters.

[75]  Gerbrand Ceder,et al.  Interface Stability in Solid-State Batteries , 2016 .

[76]  Peter Lamp,et al.  Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction. , 2015, Chemical reviews.

[77]  Feng Wu,et al.  A new solid polymer electrolyte incorporating Li10GeP2S12 into a polyethylene oxide matrix for all-solid-state lithium batteries , 2016 .

[78]  Joseph M. DeSimone,et al.  Compliant glass–polymer hybrid single ion-conducting electrolytes for lithium batteries , 2015, Proceedings of the National Academy of Sciences.

[79]  S. Ong,et al.  Design Principles for Solid‐State Lithium Superionic Conductors , 2015 .

[80]  Karsten Reuter,et al.  Interfacial challenges in solid-state Li ion batteries. , 2015, The journal of physical chemistry letters.

[81]  Joachim Sann,et al.  Interphase formation on lithium solid electrolytes—An in situ approach to study interfacial reactions by photoelectron spectroscopy , 2015 .

[82]  Ya‐Xia Yin,et al.  Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes , 2015, Nature Communications.

[83]  M. Piszcz,et al.  Electrolytes for Li-ion transport – Review , 2015 .

[84]  Stefano Passerini,et al.  Safer Electrolytes for Lithium-Ion Batteries: State of the Art and Perspectives. , 2015, ChemSusChem.

[85]  D. Gigmes,et al.  Optimization of Block Copolymer Electrolytes for Lithium Metal Batteries , 2015 .

[86]  Senentxu Lanceros-Méndez,et al.  Polymer composites and blends for battery separators: State of the art, challenges and future trends , 2015 .

[87]  Wei Liu,et al.  Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers. , 2015, Nano letters.

[88]  Miaofang Chi,et al.  Solid Electrolyte: the Key for High‐Voltage Lithium Batteries , 2015 .

[89]  C. Liang,et al.  Lithium‐Ion Batteries: Solid Electrolyte: the Key for High‐Voltage Lithium Batteries (Adv. Energy Mater. 4/2015) , 2015 .

[90]  Terence J. Lozano,et al.  Failure Mechanism for Fast‐Charged Lithium Metal Batteries with Liquid Electrolytes , 2015 .

[91]  M. Armand,et al.  Ionic semi-interpenetrating networks as a new approach for highly conductive and stretchable polymer materials , 2015 .

[92]  H. Ardebili,et al.  High performance solid polymer electrolyte with graphene oxide nanosheets , 2014 .

[93]  Inmaculada Ortiz,et al.  Progress in the use of ionic liquids as electrolyte membranes in fuel cells , 2014 .

[94]  Kang Xu,et al.  Electrolytes and interphases in Li-ion batteries and beyond. , 2014, Chemical reviews.

[95]  Jong‐Chan Lee,et al.  Improved strength and toughness of polyketone composites using extremely small amount of polyamide 6 grafted graphene oxides , 2014 .

[96]  Hui Zhao,et al.  Composite electrolytes comprised of poly(ethylene oxide) and silica nanoparticles with grafted poly(ethylene oxide)-containing polymers , 2014 .

[97]  Bing Sun,et al.  Honeycomb-like porous gel polymer electrolyte membrane for lithium ion batteries with enhanced safety , 2014, Scientific Reports.

[98]  Venkataraman Thangadurai,et al.  Garnet-Type Solid-State Fast Li Ion Conductors for Li Batteries: Critical Review , 2014 .

[99]  Dong‐Gyun Kim,et al.  Novel composite polymer electrolytes containing poly(ethylene glycol)-grafted graphene oxide for all-solid-state lithium-ion battery applications , 2014 .

[100]  B. A. Garetz,et al.  Effect of Grain Size on the Ionic Conductivity of a Block Copolymer Electrolyte , 2014 .

[101]  Venkataraman Thangadurai,et al.  Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. , 2014, Chemical Society reviews.

[102]  Patrik Johansson,et al.  A review of electrolytes for lithium–sulphur batteries , 2014 .

[103]  Lynden A. Archer,et al.  Suppression of lithium dendrite growth using cross-linked polyethylene/poly(ethylene oxide) electrolytes: a new approach for practical lithium-metal polymer batteries. , 2014, Journal of the American Chemical Society.

[104]  Li-Jun Wan,et al.  Lithium—Sulfur Batteries: Electrochemistry, Materials, and Prospects , 2014 .

[105]  M. Galiński,et al.  Characterization and application of N-methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide ionic liquid–based gel polymer electrolyte prepared in situ by photopolymerization method in lithium ion batteries , 2014 .

[106]  Zhengyuan Tu,et al.  Nanoporous Polymer‐Ceramic Composite Electrolytes for Lithium Metal Batteries , 2014 .

[107]  Thomas H. Epps,et al.  Block copolymer electrolytes for rechargeable lithium batteries , 2014 .

[108]  J. Sakamoto,et al.  Analysis of composite electrolytes with sintered reinforcement structure for energy storage applications , 2013 .

[109]  Rachid Meziane,et al.  Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. , 2013, Nature materials.

[110]  E. Johnston-Halperin,et al.  Progress, challenges, and opportunities in two-dimensional materials beyond graphene. , 2013, ACS nano.

[111]  Kazunori Takada,et al.  Progress and prospective of solid-state lithium batteries , 2013 .

[112]  Kunlun Hong,et al.  Anomalous high ionic conductivity of nanoporous β-Li3PS4. , 2013, Journal of the American Chemical Society.

[113]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[114]  John B. Goodenough,et al.  Rechargeable batteries: challenges old and new , 2012, Journal of Solid State Electrochemistry.

[115]  Hyo-Jeong Ha,et al.  UV-curable semi-interpenetrating polymer network-integrated, highly bendable plastic crystal composite electrolytes for shape-conformable all-solid-state lithium ion batteries , 2012 .

[116]  A. Hexemer,et al.  Resolution of the Modulus versus Adhesion Dilemma in Solid Polymer Electrolytes for Rechargeable Lithium Metal Batteries , 2012 .

[117]  N. N. Batalov,et al.  Influence of solid electrolyte particles size on ionic transport in model composite system (PVdF-HFP–Li1.3Al0.3Ti1.7(PO4)3) , 2012, Ionics.

[118]  Rachid Meziane,et al.  Single-ion polymer electrolytes based on a delocalized polyanion for lithium batteries , 2011 .

[119]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[120]  P. Soudan,et al.  Solid‐State Electrode Materials with Ionic‐Liquid Properties for Energy Storage: the Lithium Solid‐State Ionic‐Liquid Concept. , 2011 .

[121]  Yuki Kato,et al.  A lithium superionic conductor. , 2011, Nature materials.

[122]  Piercarlo Mustarelli,et al.  Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. , 2011, Chemical Society reviews.

[123]  K. Shepard,et al.  Boron nitride substrates for high-quality graphene electronics. , 2010, Nature nanotechnology.

[124]  Hansu Kim,et al.  Room temperature cross-linkable gel polymer electrolytes for lithium ion batteries by in situ cationic polymerization of divinyl ether , 2010 .

[125]  A. K. Sood,et al.  Graphene: The New Two‐Dimensional Nanomaterial , 2009 .

[126]  A. Hexemer,et al.  Effect of Molecular Weight and Salt Concentration on Conductivity of Block Copolymer Electrolytes , 2009 .

[127]  A. Stephan,et al.  Nanocomposite Polymer Electrolytes For Lithium Batteries , 2009 .

[128]  Richard G. Jones,et al.  1: Glossary of Basic Terms in Polymer Science (1996) , 2009 .

[129]  P. Bruce,et al.  Nanomaterials for rechargeable lithium batteries. , 2008, Angewandte Chemie.

[130]  M. Armand,et al.  Building better batteries , 2008, Nature.

[131]  V. Thangadurai,et al.  Fast Lithium Ion Conduction in Garnet‐Type Li7La3Zr2O12. , 2007 .

[132]  Eric D. Wetzel,et al.  Electrochemical and mechanical behavior in mechanically robust solid polymer electrolytes for use in multifunctional structural batteries , 2007 .

[133]  Moon Jeong Park,et al.  Effect of molecular weight on the mechanical and electrical properties of block copolymer electrolytes , 2007 .

[134]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[135]  B. Scrosati,et al.  Advanced, lithium batteries based on high-performance composite polymer electrolytes , 2006 .

[136]  Yi Pan,et al.  Conductivity studies on ceramic Li1.3Al0.3Ti1.7(PO4)3-filled PEO-based solid composite polymer electrolytes , 2006 .

[137]  K. S. Nahm,et al.  Review on composite polymer electrolytes for lithium batteries , 2006 .

[138]  Jingyu Xi,et al.  PVDF-PEO blends based microporous polymer electrolyte: Effect of PEO on pore configurations and ionic conductivity , 2006 .

[139]  A. J. Bhattacharyya,et al.  Extremely High Silver Ionic Conductivity in Composites of Silver Halide (AgBr, AgI) and Mesoporous Alumina , 2006 .

[140]  Xiangming He,et al.  In situ composite of nano SiO2–P(VDF-HFP) porous polymer electrolytes for Li-ion batteries , 2005 .

[141]  K. Kawamura,et al.  Synthesis of Li + Ion Conductive PEO-PSt Block Copolymer Electrolyte with Microphase Separation Structure , 2005 .

[142]  Charles W. Monroe,et al.  The Impact of Elastic Deformation on Deposition Kinetics at Lithium/Polymer Interfaces , 2005 .

[143]  Kang Xu,et al.  Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. , 2004, Chemical reviews.

[144]  M. Whittingham,et al.  Lithium batteries and cathode materials. , 2004, Chemical reviews.

[145]  Joachim Maier,et al.  Second Phase Effects on the Conductivity of Non‐Aqueous Salt Solutions: “Soggy Sand Electrolytes” , 2004 .

[146]  D. Sadoway Block and graft copolymer electrolytes for high-performance, solid-state, lithium batteries , 2004 .

[147]  L. Sperling Interpenetrating Polymer Networks , 2004 .

[148]  Yuanhua Lin,et al.  Enhanced ionic conductivity of polymer electrolytes containing nanocomposite SiO2 particles. , 2003, Physical review letters.

[149]  L. Hong,et al.  Morphology, crystallinity, and electrochemical properties of in situ formed poly(ethylene oxide)/TiO2 nanocomposite polymer electrolytes , 2003 .

[150]  O. Yamamoto,et al.  Composite polymer electrolytes of poly(ethylene oxide)/BaTiO3/Li salt with hyperbranched polymer , 2003 .

[151]  Yongku Kang,et al.  A study of cross-linked PEO gel polymer electrolytes using bisphenol A ethoxylate diacrylate: ionic conductivity and mechanical properties , 2003 .

[152]  D. Macfarlane,et al.  Ion transport in polymer electrolytes containing nanoparticulate TiO2: The influence of polymer morphology , 2003 .

[153]  B. Kumar,et al.  Poly(ethylene oxide)-Based Composite Electrolytes: Crystalline ⇌ Amorphous Transition , 2001 .

[154]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[155]  B. Scrosati,et al.  Enhancement of ion transport in polymer electrolytes by addition of nanoscale inorganic oxides , 2001 .

[156]  B. Kumar,et al.  On the origin of conductivity enhancement in polymer-ceramic composite electrolytes , 2001 .

[157]  B. Scrosati,et al.  Polymer Electrolytes: The Key to Lithium Polymer Batteries , 2000 .

[158]  B. Scrosati,et al.  Transport and interfacial properties of composite polymer electrolytes , 2000 .

[159]  Toshiyuki Watanabe,et al.  High Ionic Conductivity of Polyether-Based Network Polymer Electrolytes with Hyperbranched Side Chains , 1999 .

[160]  C. Wan,et al.  Review of gel-type polymer electrolytes for lithium-ion batteries , 1999 .

[161]  Young-Il Jang,et al.  Rubbery Block Copolymer Electrolytes for Solid‐State Rechargeable Lithium Batteries , 1999 .

[162]  A. Zalewska,et al.  Composite Polyether Electrolytes with Lewis Acid Type Additives , 2001 .

[163]  Barbara Laïk,et al.  Ion–ion interactions and lithium stability in a crosslinked PEO containing lithium salts , 1998 .

[164]  J. R. Stevens,et al.  Effect of Salt Concentration on the Conductivity of PEO-Based Composite Polymeric Electrolytes , 1998 .

[165]  W. Wieczorek,et al.  Ionic Interactions in Polymeric Electrolytes Based on Low Molecular Weight Poly(ethylene glycol)s , 1998 .

[166]  Piercarlo Mustarelli,et al.  PEO-based composite polymer electrolytes , 1998 .

[167]  W. Meyer,et al.  Polymer electrolytes for lithium-ion batteries. , 1998, Advanced materials.

[168]  S. Prabaharan,et al.  Effect of PEO addition on the electrolytic and thermal properties of PVDF-LiClO4 polymer electrolytes , 1997 .

[169]  Bruce Dunn,et al.  A Sol-Gel Solid Electrolyte with High Lithium Ion Conductivity. , 1997 .

[170]  K. M. Abraham,et al.  A Polymer Electrolyte‐Based Rechargeable Lithium/Oxygen Battery , 1996 .

[171]  Joachim Maier,et al.  Ionic conduction in space charge regions , 1995 .

[172]  B. Kumar,et al.  Polymer-ceramic composite electrolytes , 1994 .

[173]  Michel Armand,et al.  The history of polymer electrolytes , 1994 .

[174]  M. Armand,et al.  Electrochemical behavior of lithium electrolytes based on new polyether networks , 1994 .

[175]  W. Wieczorek Entropy effects on conductivity of the blend-based and composite polymer solid electrolytes , 1992 .

[176]  Nancy J. Dudney,et al.  Fabrication and characterization of amorphous lithium electrolyte thin films and rechargeable thin-film batteries , 1992 .

[177]  M. Armand,et al.  A new polymer network for ionic conduction , 1992 .

[178]  M. Armand Polymers with Ionic Conductivity , 1990 .

[179]  D. Mazza Remarks on a ternary phase in the La2O3Me2O5Li2O system (Me=Nb, Ta) , 1988 .

[180]  F. M. Gray,et al.  Synthesis and characterization of ABA block copolymer-based polymer electrolytes , 1987 .

[181]  A. West,et al.  Entropy effects in ionic conductivity , 1986 .

[182]  Michel Armand,et al.  Polymer solid electrolytes - an overview , 1983 .

[183]  B. Steele,et al.  Effects of inert fillers on the mechanical and electrochemical properties of lithium salt-poly(ethylene oxide) polymer electrolytes , 1982 .

[184]  G. Robert,et al.  Superionic conduction in Li2S - P2S5 - LiI - glasses , 1981 .

[185]  L. Sperling Interpenetrating Polymer Networks and Related Materials , 1981 .

[186]  H. Hong,et al.  Crystal structure and ionic conductivity of Li14Zn(GeO4)4 and other new Li+ superionic conductors☆ , 1978 .

[187]  A. Rabenau,et al.  Ionic conductivity in Li3N single crystals , 1977 .

[188]  B. Taylor,et al.  New solid ionic conductors , 1977 .

[189]  B. Boukamp,et al.  Lithium ion conductivity in lithium nitride , 1976 .

[190]  P. V. Wright,et al.  Complexes of alkali metal ions with poly(ethylene oxide) , 1973 .