Energy decomposition in molecular complexes: Implications for the treatment of polarization in molecular simulations

This study examines the contribution of electrostatic and polarization to the interaction energy in a variety of molecular complexes. The results obtained from the Kitaura–Morokuma (KM) energy decomposition analysis at the HF/6‐31G(d) level indicate that, for intermolecular distances around the equilibrium geometries, the polarization energy can be determined as the addition of the polarization energies of interacting blocks, as the mixed polarization term is typically negligible. Comparison of KM and QM/MM results shows that the electrostatic energy determined in the KM method is underestimated (in absolute value) by QM/MM methods. The reason of such underestimation can be attributed to the simplified representation of treating the interaction between overlapping charge distribution by the interaction of a QM molecule with a set of point charges. Nevertheless, the polarization energies calculated by KM and QM/MM methods are in close agreement. Finally, a consistent, automated strategy to derive charge distributions that include implicitly polarization effects in pairwise, additive force fields is presented. The strategy relies in the simultaneous fitting of electrostatic and polarization energies computed by placing a suitable perturbing particle at selected points around the molecule. The suitability of these charges to describe molecular interactions is discussed. © 2003 Wiley Periodicals, Inc. J Comput Chem 24: 1263–1275, 2003

[1]  F. Javier Luque,et al.  Fast evaluation of induction energies: a second-order perturbation theory approach , 2000 .

[2]  F. Javier Luque,et al.  Perturbation approach to combined QM/MM simulation of solute-solvent interactions in solution , 2003 .

[3]  W. L. Jorgensen Free energy calculations: a breakthrough for modeling organic chemistry in solution , 1989 .

[4]  F. J. Luque,et al.  Is polarization important in cation-pi interactions? , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Modesto Orozco,et al.  On the use of AM1 and MNDO wave functions to compute accurate electrostatic charges , 1990 .

[6]  L. E. Chirlian,et al.  Atomic charges derived from electrostatic potentials: A detailed study , 1987 .

[7]  Peter A. Kollman,et al.  Calculation of Chloroform/Water Partition Coefficients for the N-Methylated Nucleic Acid Bases , 1997 .

[8]  Joyce J. Kaufman,et al.  Improved SCF interaction energy decomposition scheme corrected for basis set superposition effect , 1983 .

[9]  Claude Millot,et al.  Fast and accurate determination of induction energies: reduction of topologically distributed polarizability models , 2001 .

[10]  Christophe Chipot,et al.  Cation−π Interactions in Proteins: Can Simple Models Provide an Accurate Description? , 1999 .

[11]  P. Kollman,et al.  Encyclopedia of computational chemistry , 1998 .

[12]  Arieh Warshel,et al.  Microscopic and semimicroscopic calculations of electrostatic energies in proteins by the POLARIS and ENZYMIX programs , 1993, J. Comput. Chem..

[13]  P. Kollman,et al.  A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules , 1995 .

[14]  Michelle Francl,et al.  Polarization corrections to electrostatic potentials , 1985 .

[15]  P. Kollman Advances and Continuing Challenges in Achieving Realistic and Predictive Simulations of the Properties of Organic and Biological Molecules , 1996 .

[16]  Arieh Warshel,et al.  Simulation of enzyme reactions using valence bond force fields and other hybrid quantum/classical approaches , 1993 .

[17]  Ernest R. Davidson,et al.  Energy partitioning of the self‐consistent field interaction energy of ScCO , 1989 .

[18]  J. Mathias,et al.  Program , 1970, Symposium on VLSI Technology.

[19]  Jiali Gao,et al.  Energy components of aqueous solution: Insight from hybrid QM/MM simulations using a polarizable solvent model , 1997, J. Comput. Chem..

[20]  K. Merz,et al.  Combined Quantum Mechanical/Molecular Mechanical Methodologies Applied to Biomolecular Systems , 1999 .

[21]  Alexander D. MacKerell,et al.  An all-atom empirical energy function for the simulation of nucleic acids , 1995 .

[22]  Harry A. Stern,et al.  Fluctuating Charge, Polarizable Dipole, and Combined Models: Parameterization from ab Initio Quantum Chemistry , 1999 .

[23]  G. Ciccotti,et al.  Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes , 1977 .

[24]  György G. Ferenczy,et al.  Modeling polarization through induced atomic charges , 2001 .

[25]  Jacopo Tomasi,et al.  Counterpoise corrections to the interaction energy components in bimolecular complexes , 1985 .

[26]  Christophe Voisin,et al.  Computation of accurate electronic molecular polarizabilities , 1992 .

[27]  P. C. Hariharan,et al.  The influence of polarization functions on molecular orbital hydrogenation energies , 1973 .

[28]  Claude Millot,et al.  Alternative Approaches for the Calculation of Induction Energies: Characterization, Effectiveness, and Pitfalls , 2001 .

[29]  Peter A. Kollman,et al.  Cation-.pi. Interactions: Nonadditive Effects Are Critical in Their Accurate Representation , 1995 .

[30]  P. Kollman,et al.  A well-behaved electrostatic potential-based method using charge restraints for deriving atomic char , 1993 .

[31]  F. J. Luque,et al.  Theoretical Methods for the Description of the Solvent Effect in Biomolecular Systems. , 2000, Chemical reviews.

[32]  T. P. Straatsma,et al.  Free energy thermodynamic integrations in molecular dynamics simulations using a noniterative method to include electronic polarization , 1990 .

[33]  Keiji Morokuma,et al.  Molecular Orbital Studies of Hydrogen Bonds. III. C=O···H–O Hydrogen Bond in H2CO···H2O and H2CO···2H2O , 1971 .

[34]  Mark A. Spackman,et al.  A SIMPLE QUANTITATIVE MODEL OF HYDROGEN-BONDING , 1986 .

[35]  C. F. Curtiss,et al.  Molecular Theory Of Gases And Liquids , 1954 .

[36]  Modesto Orozco,et al.  Semiclassical-Continuum Approach to the Electrostatic Free Energy of Solvation , 1997 .

[37]  Donald E. Williams Representation of the molecular electrostatic potential by atomic multipole and bond dipole models , 1988 .

[38]  C. Breneman,et al.  Determining atom‐centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis , 1990 .

[39]  P. Weiner,et al.  Computer Simulation of Biomolecular Systems , 1997 .

[40]  Modesto Orozco,et al.  Role of Intramolecular Hydrogen Bonds in the Intermolecular Hydrogen Bonding of Carbohydrates , 1998 .

[41]  Donald E. Williams,et al.  Representation of the molecular electrostatic potential by a net atomic charge model , 1981 .

[42]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[43]  F. J. Luque,et al.  Extension of MST/SCRF method to organic solvents: Ab initio and semiempirical parametrization for neutral solutes in CCl4 , 1996, J. Comput. Chem..

[44]  P. Kollman,et al.  Biomolecular simulations: recent developments in force fields, simulations of enzyme catalysis, protein-ligand, protein-protein, and protein-nucleic acid noncovalent interactions. , 2001, Annual review of biophysics and biomolecular structure.

[45]  F. Javier Luque,et al.  Suitability of density functional methods for calculation of electrostatic properties , 1997, J. Comput. Chem..

[46]  Kazuo Kitaura,et al.  A new energy decomposition scheme for molecular interactions within the Hartree‐Fock approximation , 1976 .

[47]  Modesto Orozco,et al.  Effect of electron correlation on the electrostatic potential distribution of molecules , 1991 .

[48]  M. Thompson,et al.  QM/MMpol: A Consistent Model for Solute/Solvent Polarization. Application to the Aqueous Solvation and Spectroscopy of Formaldehyde, Acetaldehyde, and Acetone , 1996 .

[49]  Darrin M. York,et al.  A chemical potential equalization method for molecular simulations , 1996 .

[50]  F. Javier Luque,et al.  Polarization effects in generalized molecular interaction potential: New Hamiltonian for reactivity studies and mixed QM/MM calculations , 1998 .

[51]  Steve Scheiner,et al.  Comparison of Morokuma and perturbation theory approaches to decomposition of interaction energy. (NH4)+…NH3 , 1990 .

[52]  P. Kollman,et al.  Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. , 2000, Accounts of chemical research.

[53]  P. Kollman,et al.  An approach to computing electrostatic charges for molecules , 1984 .

[54]  Clifford E. Dykstra,et al.  Multipole polarizabilities and hyperpolarizabilities of AHn and A2Hn molecules from derivative Hartree-Fock theory , 1987 .

[55]  Ruhong Zhou,et al.  Parametrizing a polarizable force field from ab initio data. I. The fluctuating point charge model , 1999 .

[56]  Mark S. Gordon,et al.  Energy Decomposition Analyses for Many-Body Interaction and Applications to Water Complexes , 1996 .

[57]  William L. Jorgensen,et al.  Development of an All-Atom Force Field for Heterocycles. Properties of Liquid Pyrrole, Furan, Diazoles, and Oxazoles , 1998 .

[58]  V. Kellö,et al.  Medium-size polarized basis sets for high-level-correlated calculations of molecular electric properties , 1991 .

[59]  S. F. Boys,et al.  The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors , 1970 .

[60]  F. Javier Luque,et al.  Optimization of solute cavities and van der Waals parameters in ab initio MST‐SCRF calculations of neutral molecules , 1994, J. Comput. Chem..

[61]  Modesto Orozco,et al.  Solvent Effects in Chloroform Solution: Parametrization of the MST/SCRF Continuum Model , 1996 .

[62]  Frank A. Momany,et al.  Determination of partial atomic charges from ab initio molecular electrostatic potentials. Application to formamide, methanol, and formic acid , 1978 .

[63]  Peter Itskowitz,et al.  Chemical Potential Equalization Principle: Direct Approach from Density Functional Theory , 1997 .

[64]  Modesto Orozco,et al.  New strategies to incorporate the solvent polarization in self‐consistent reaction field and free‐energy perturbation simulations , 1995 .

[65]  Sarah L. Price,et al.  A TRANSFERABLE DISTRIBUTED MULTIPOLE MODEL FOR THE ELECTROSTATIC INTERACTIONS OF PEPTIDES AND AMIDES , 1990 .

[66]  Martin J. Field,et al.  A chemical potential equalization model for treating polarization in molecular mechanical force fields , 2000 .

[67]  Robert Soliva,et al.  Reliability of MEP and MEP-derived properties computed from DFT methods for molecules containing P, S and CL , 1997 .

[68]  Steven J. Stuart,et al.  Dynamical fluctuating charge force fields: Application to liquid water , 1994 .

[69]  William L. Jorgensen,et al.  Gas‐phase and liquid‐state properties of esters, nitriles, and nitro compounds with the OPLS‐AA force field , 2001, J. Comput. Chem..

[70]  Jacopo Tomasi,et al.  Theoretical investigations on the solvation process , 1971 .

[71]  F. Javier Luque,et al.  Solvation in octanol: parametrization of the continuum MST model , 2001, J. Comput. Chem..

[72]  Mark S. Gordon,et al.  General atomic and molecular electronic structure system , 1993, J. Comput. Chem..