Frequent Flaring in the TRAPPIST-1 System—Unsuited for Life?

We analyze the K2 light curve of the TRAPPIST-1 system. The Fourier analysis of the data suggests Prot = 3.295 ± 0.003 days. The light curve shows several flares, of which we analyzed 42 events with integrated flare energies of 1.26 × 1030–1.24 × 1033 erg. Approximately 12% of the flares were complex, multi-peaked eruptions. The flaring and the possible rotational modulation shows no obvious correlation. The flaring activity of TRAPPIST-1 probably continuously alters the atmospheres of the orbiting exoplanets, which makes these less favorable for hosting life.

[1]  L. Kaltenegger,et al.  Biofluorescent Worlds – II. Biological fluorescence induced by stellar UV flares, a new temporal biosignature , 2019, Monthly Notices of the Royal Astronomical Society.

[2]  C. S. Fernandes,et al.  A seven-planet resonant chain in TRAPPIST-1 , 2017, Nature Astronomy.

[3]  Crispin T. S. Little,et al.  Evidence for early life in Earth’s oldest hydrothermal vent precipitates , 2017, Nature.

[4]  D.Queloz,et al.  Reconnaissance of the TRAPPIST-1 exoplanet system in the Lyman-α line , 2017, 1702.07004.

[5]  L. Kaltenegger,et al.  UV surface habitability of the TRAPPIST-1 system , 2017, 1702.06936.

[6]  C. S. Fernandes,et al.  Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1 , 2017, Nature.

[7]  Jaymie M. Matthews,et al.  MOST OBSERVATIONS OF OUR NEAREST NEIGHBOR: FLARES ON PROXIMA CENTAURI , 2016, 1608.06672.

[8]  L. Decin,et al.  INFLUENCE OF STELLAR FLARES ON THE CHEMICAL COMPOSITION OF EXOPLANETS AND SPECTRA , 2016, 1607.08147.

[9]  J. Davenport,et al.  KEPLER FLARES. IV. A COMPREHENSIVE ANALYSIS OF THE ACTIVITY OF THE dM4e STAR GJ 1243 , 2016, 1607.03886.

[10]  M. Opher,et al.  PROBABILITY OF CME IMPACT ON EXOPLANETS ORBITING M DWARFS AND SOLAR-LIKE STARS , 2016, 1605.02683.

[11]  D. Ehrenreich,et al.  Strong XUV irradiation of the Earth-sized exoplanets orbiting the ultracool dwarf TRAPPIST-1 , 2016, 1605.01564.

[12]  P. Magain,et al.  Temperate Earth-sized planets transiting a nearby ultracool dwarf star , 2016, Nature.

[13]  Heidi J. Korhonen,et al.  Investigating magnetic activity in very stable stellar magnetic fields: long-term photometric and spectroscopic study of the fully convective M4 dwarf V374 Peg , 2016, 1603.00867.

[14]  K. Cruz,et al.  FUNDAMENTAL PARAMETERS AND SPECTRAL ENERGY DISTRIBUTIONS OF YOUNG AND FIELD AGE OBJECTS WITH MASSES SPANNING THE STELLAR TO PLANETARY REGIME , 2015, 1508.01767.

[15]  L. Kaltenegger,et al.  EFFECT OF UV RADIATION ON THE SPECTRAL FINGERPRINTS OF EARTH-LIKE PLANETS ORBITING M STARS , 2015, 1506.07202.

[16]  L. Kiss,et al.  PUSHING THE LIMITS: K2 OBSERVATIONS OF THE TRANS-NEPTUNIAN OBJECTS 2002 GV31 and (278361) 2007 JJ43 , 2015, 1504.03671.

[17]  M. Aschwanden,et al.  GLOBAL ENERGETICS OF SOLAR FLARES. III. NONTHERMAL ENERGIES , 2015, 1607.06488.

[18]  Leslie Hebb,et al.  KEPLER FLARES. II. THE TEMPORAL MORPHOLOGY OF WHITE-LIGHT FLARES ON GJ 1243 , 2014, 1411.3723.

[19]  Russell Deitrick,et al.  KEPLER FLARES. I. ACTIVE AND INACTIVE M DWARFS , 2014, 1410.7779.

[20]  J. Donati,et al.  Effects of M dwarf magnetic fields on potentially habitable planets , 2013, 1306.4789.

[21]  R. Deshpande,et al.  HABITABLE ZONES AROUND MAIN-SEQUENCE STARS: NEW ESTIMATES , 2013, 1301.6674.

[22]  András Pál,et al.  fitsh– a software package for image processing , 2011 .

[23]  M. Velli,et al.  A MODEL FOR MAGNETICALLY COUPLED SYMPATHETIC ERUPTIONS , 2011, 1108.2069.

[24]  D. Szczygiel,et al.  Photometric and spectroscopic observations of three rapidly rotating late-type stars: EY Dra, V374 Peg, and GSC 02038-00293† , 2010, 1007.0242.

[25]  S. Hawley,et al.  The effect of a strong stellar flare on the atmospheric chemistry of an earth-like planet orbiting an M dwarf. , 2010, Astrobiology.

[26]  G. Basri,et al.  A VOLUME-LIMITED SAMPLE OF 63 M7–M9.5 DWARFS. II. ACTIVITY, MAGNETISM, AND THE FADE OF THE ROTATION-DOMINATED DYNAMO , 2009, 0912.4259.

[27]  W. Ip,et al.  Aeronomy of Extra-Solar Giant Planets , 2008 .

[28]  R. Grosberg,et al.  The Evolution of Multicellularity: A Minor Major Transition? , 2007 .

[29]  Astronomy,et al.  Spots, plages, and flares on λ Andromedae and II Pegasi ⋆ , 2007, 0711.3322.

[30]  I. Ribas,et al.  Optical flares from the faint mid-dM star 2MASS J00453912+4140395 , 2007, 0711.0742.

[31]  Ignasi Ribas,et al.  Coronal mass ejection (CME) activity of low mass M stars as an important factor for the habitability of terrestrial exoplanets. I. CME impact on expected magnetospheres of Earth-like exoplanets in close-in habitable zones. , 2007, Astrobiology.

[32]  J. C. Pandey,et al.  Optical and X-Ray Studies of Chromospherically Active Stars: FR Cancri, HD 95559, and LO Pegasi , 2005, astro-ph/0506010.

[33]  L. Ramsey,et al.  Rotational modulation of the photospheric and chromospheric activity in the young, single K2-dwarf PW And ?;?? , 2003, astro-ph/0309072.

[34]  Caltech,et al.  New Neighbors from 2MASS: Activity and Kinematics at the Bottom of the Main Sequence , 2000, astro-ph/0004361.

[35]  S. Hawley,et al.  The Great Flare of 1985 April 12 on AD Leonis , 1991 .

[36]  Z. Kolláth The Program Package MUFRAN , 1990 .