Compter (rapidement) le nombre de solutions d'\'equations dans les corps finis

The number of solutions in finite fields of a system of polynomial equations obeys a very strong regularity, reflected for example by the rationality of the zeta function of an algebraic variety defined over a finite field, or the modularity of Hasse-Weil's $L$-function of an elliptic curve over $\Q$. Since two decades, efficient methods have been invented to compute effectively this number of solutions, notably in view of cryptographic applications. This expos\'e presents some of these methods, generally relying on the use of Lefshetz's trace formula in an adequate cohomology theory and discusses their respective advantages. ----- Le nombre de solutions dans les corps finis d'un syst\`eme d'\'equations polynomiales ob\'eit \`a une tr\`es forte r\'egularit\'e, refl\'et\'ee par exemple par la rationalit\'e de la fonction z\^eta d'une vari\'et\'e alg\'ebrique sur un corps fini, ou la modularit\'e de la fonction $L$ de Hasse-Weil d'une courbe elliptique sur $\Q$. Depuis une vingtaine d'ann\'ees des m\'ethodes efficaces ont \'et\'e invent\'ees pour calculer effectivement ce nombre de solutions, notamment en vue d'applications \`a la cryptographie. L'expos\'e en pr\'esentera quelques-unes, g\'en\'eralement fond\'ees l'utilisation de la formule des traces de Lefschetz dans une th\'eorie cohomologique convenable, et expliquera leurs avantages respectifs.

[1]  William Messing,et al.  The Crystals Associated to Barsotti-Tate Groups: With Applications to Abelian Schemes , 1972 .

[2]  Alan G. B. Lauder A Recursive Method for Computing Zeta Functions of Varieties , 2006, math/0602352.

[3]  Hendrik Hubrechts,et al.  Point Counting in Families of Hyperelliptic Curves , 2006, Found. Comput. Math..

[4]  D. Shanks Class number, a theory of factorization, and genera , 1971 .

[5]  Alan G. B. Lauder Rigid cohomology and $p$-adic point counting , 2005 .

[6]  V. Müller Ein Algorithmus zur Bestimmung der Punktanzahl elliptischer Kurven über endlichen Körpern der Char , 1995 .

[7]  Atsushi Shiho,et al.  Crystalline Fundamental Groups II — Log Convergent Cohomology and Rigid Cohomology , 2002 .

[8]  A. Weil,et al.  Variétés abéliennes et courbes algébriques , 1948 .

[9]  Bas Edixhoven,et al.  On the Computation of the Coefficients of a Modular Form , 2006, ANTS.

[10]  A. Grothendieck,et al.  Cohomologie l-adique et fonctions L , 1977 .

[11]  D. Cantor On the analogue of the division polynomials for hyperelliptic curves. , 1994 .

[12]  S. Lang,et al.  Abelian varieties over finite fields , 2005 .

[13]  David Lubicz,et al.  Counting Points on Elliptic Curves over Finite Fields of Small Characteristic in Quasi Quadratic Time , 2003, EUROCRYPT.

[14]  Alfred Menezes,et al.  Algebraic curves and cryptography , 2005, Finite Fields Their Appl..

[15]  R. Taylor,et al.  On the modularity of elliptic curves over 𝐐: Wild 3-adic exercises , 2001, Journal of the American Mathematical Society.

[16]  R. Carls,et al.  A p-adic quasi-quadratic point counting algorithm , 2007, 0706.0234.

[17]  Christophe Ritzenthaler,et al.  Point Counting on Genus 3 Non Hyperelliptic Curves , 2004, ANTS.

[18]  R. Harley,et al.  An extension of Satoh's algorithm and its implementation , 2000 .

[19]  Frederik Vercauteren,et al.  Counting points on Cab curves using Monsky-Washnitzer cohomology , 2006, Finite Fields Their Appl..

[20]  Wouter Castryck,et al.  Computing Zeta Functions of Nondegenerate Curves , 2006, IACR Cryptol. ePrint Arch..

[21]  B. L. Stum,et al.  A comparison theorem for weights , 2002 .

[22]  P. Berthelot Dualit de Poincar et formule de Knneth en cohomologie rigide , 1997 .

[23]  Pierre Berthelot,et al.  Finitude et pureté cohomologique en cohomologie rigide avec un appendice par Aise Johan de Jong , 1997 .

[24]  Ueli Maurer,et al.  The Relationship Between Breaking the Diffie-Hellman Protocol and Computing Discrete Logarithms , 1999, SIAM J. Comput..

[25]  Victor Shoup,et al.  Lower Bounds for Discrete Logarithms and Related Problems , 1997, EUROCRYPT.

[26]  Leonard M. Adleman,et al.  Counting Points on Curves and Abelian Varieties Over Finite Fields , 2001, J. Symb. Comput..

[27]  Nicolas Gürel,et al.  An Extension of Kedlaya's Point-Counting Algorithm to Superelliptic Curves , 2001, ASIACRYPT.

[28]  Jonathan Pila Counting points on curves over families in polynomial time , 2005 .

[29]  Robert Harley,et al.  Counting Points on Hyperelliptic Curves over Finite Fields , 2000, ANTS.

[30]  Henri Cohen,et al.  A course in computational algebraic number theory , 1993, Graduate texts in mathematics.

[31]  Jean Marc Couveignes,et al.  Computing l-Isogenies Using the p-Torsion , 1996, ANTS.

[32]  Nicolas Gürel,et al.  Counting Points in Medium Characteristic Using Kedlaya's Algorithm , 2003, Exp. Math..

[33]  Frederik Vercauteren,et al.  Computing Zeta Functions of Hyperelliptic Curves over Finite Fields of Characteristic 2 , 2002, CRYPTO.

[34]  J. Pila Frobenius maps of Abelian varieties and finding roots of unity in finite fields , 1990 .

[35]  Paula B. Cohen On the coefficients of the transformation polynomials for the elliptic modular function , 1984 .

[36]  Siegfried Bosch,et al.  A rigid analytic version of M. Artin's theorem on analytic equations , 1981 .

[37]  Goro Kato,et al.  Zeta matrices of elliptic curves , 1982 .

[38]  E. Bach Explicit bounds for primality testing and related problems , 1990 .

[39]  K. Kedlaya Counting Points on Hyperelliptic Curves using Monsky-Washnitzer Cohomology , 2001, math/0105031.

[40]  David Harvey,et al.  Kedlaya's Algorithm in Larger Characteristic , 2006 .

[41]  Frederik Vercauteren,et al.  An Extension of Kedlaya's Algorithm to Hyperelliptic Curves in Characteristic 2 , 2004, Journal of Cryptology.

[42]  Finiteness of rigid cohomology with coefficients , 2002, math/0208027.

[43]  Berit Skjernaa,et al.  Satoh's algorithm in characteristic 2 , 2003, Math. Comput..

[44]  John J. Cannon,et al.  The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..

[45]  Alan G. B. Lauder Deformation Theory and The Computation of Zeta Functions , 2004 .

[46]  Alfred Menezes,et al.  A Survey of Public-Key Cryptosystems , 2004, SIAM Rev..

[47]  Z. Mebkhout,et al.  Sur le théorème de finitude de la cohomologie p-adique d'une variété affine non singulière , 1997 .

[48]  R. Schoof Elliptic Curves Over Finite Fields and the Computation of Square Roots mod p , 1985 .

[49]  R. Lercier,et al.  A quasi quadratic time algorithm for hyperelliptic curve point counting , 2006 .

[50]  Joos Vandewalle,et al.  A Memory Efficient Version of Satoh's Algorithm , 2001, EUROCRYPT.

[51]  Alan G. B. Lauder,et al.  Counting points on varieties over finite fields of small characteristic , 2006, math/0612147.

[52]  Françoise Morain Calcul du nombre de points sur une courbe elliptique dans un corps fini : aspects algorithmiques , 1995 .

[53]  B. Chiarellotto Weights in rigid cohomology applications to unipotent F-isocrystals , 1998 .

[54]  N. Smart,et al.  The equivalence between the DHP and DLP for elliptic curves used in practical applications , 2004 .

[55]  Reynald Lercier,et al.  Computing isogenies between elliptic curves over Fpn using Couveignes's algorithm , 2000, Math. Comput..

[56]  Kiran S. Kedlaya,et al.  Bounding Picard numbers of surfaces using p-adic cohomology , 2006 .

[57]  Ian F. Blake,et al.  Elliptic curves in cryptography , 1999 .

[58]  J. Pollard,et al.  Monte Carlo methods for index computation () , 1978 .

[59]  Takakazu Satoh,et al.  Fast computation of canonical lifts of elliptic curves and its application to point counting , 2003 .

[60]  P. Deligne,et al.  Formes modulaires et représentations e -adiques , 1969 .

[61]  Daqing Wan,et al.  Algorithmic theory of zeta functions over finite fields , 2008 .

[62]  Renée Elkik,et al.  Solutions d'équations à coefficients dans un anneau hensélien , 1973 .

[63]  David R. Kohel,et al.  The AGM-X0(N) Heegner Point Lifting Algorithm and Elliptic Curve Point Counting , 2003, ASIACRYPT.

[64]  Bernard Dwork,et al.  On the Rationality of the Zeta Function of an Algebraic Variety , 1960 .