Aggregate subgradient method for nonsmooth DC optimization
暂无分享,去创建一个
Sona Taheri | Marko M. Mäkelä | Adil M. Bagirov | Napsu Karmitsa | Kaisa Joki | M. Mäkelä | A. Bagirov | N. Karmitsa | S. Taheri | Kaisa Joki
[1] Alexander Shapiro,et al. Stochastic Approximation approach to Stochastic Programming , 2013 .
[2] Adil M. Bagirov,et al. An Approximate ADMM for Solving Linearly Constrained Nonsmooth Optimization Problems with Two Blocks of Variables , 2019, Nonsmooth Optimization and Its Applications.
[3] Laurence A. Wolsey,et al. Two “well-known” properties of subgradient optimization , 2009, Math. Program..
[4] H. Tuy. Convex analysis and global optimization , 1998 .
[5] Franz Kappel,et al. An Implementation of Shor's r-Algorithm , 2000, Comput. Optim. Appl..
[6] O. Nelles,et al. An Introduction to Optimization , 1996, IEEE Antennas and Propagation Magazine.
[7] Adil M. Bagirov,et al. Introduction to Nonsmooth Optimization , 2014 .
[8] Adil M. Bagirov,et al. Codifferential method for minimizing nonsmooth DC functions , 2011, J. Glob. Optim..
[9] Defeng Sun,et al. Quasi-Newton Bundle-Type Methods for Nondifferentiable Convex Optimization , 1998, SIAM J. Optim..
[10] Le Thi Hoai An,et al. The DC (Difference of Convex Functions) Programming and DCA Revisited with DC Models of Real World Nonconvex Optimization Problems , 2005, Ann. Oper. Res..
[11] Kaisa Miettinen,et al. Globally convergent limited memory bundle method for large-scale nonsmooth optimization , 2007, Math. Program..
[12] Adil M. Bagirov,et al. Introduction to Nonsmooth Optimization: Theory, Practice and Software , 2014 .
[13] Alexander S. Strekalovsky. Global Optimality Conditions for Nonconvex Optimization , 1998, J. Glob. Optim..
[14] Naum Zuselevich Shor,et al. Minimization Methods for Non-Differentiable Functions , 1985, Springer Series in Computational Mathematics.
[15] Kaisa Miettinen,et al. New limited memory bundle method for large-scale nonsmooth optimization , 2004, Optim. Methods Softw..
[16] Antonio Fuduli,et al. Minimizing Nonconvex Nonsmooth Functions via Cutting Planes and Proximity Control , 2003, SIAM J. Optim..
[17] Adil M. Bagirov,et al. Minimizing nonsmooth DC functions via successive DC piecewise-affine approximations , 2018, J. Glob. Optim..
[18] Jan Vlcek,et al. A bundle-Newton method for nonsmooth unconstrained minimization , 1998, Math. Program..
[19] Hoai An Le Thi,et al. Solving a Class of Linearly Constrained Indefinite Quadratic Problems by D.C. Algorithms , 1997 .
[20] Adil M. Bagirov,et al. Subgradient Method for Nonconvex Nonsmooth Optimization , 2013, J. Optim. Theory Appl..
[21] Jorge J. Moré,et al. Digital Object Identifier (DOI) 10.1007/s101070100263 , 2001 .
[22] Le Thi Hoai An,et al. Solving a Class of Linearly Constrained Indefinite Quadratic Problems by D.C. Algorithms , 1997, J. Glob. Optim..
[23] K. Kiwiel. Methods of Descent for Nondifferentiable Optimization , 1985 .
[24] Antoine Soubeyran,et al. Global convergence of a proximal linearized algorithm for difference of convex functions , 2015, Optimization Letters.
[25] P. Neittaanmäki,et al. Nonsmooth Optimization: Analysis and Algorithms with Applications to Optimal Control , 1992 .
[26] Adil M. Bagirov,et al. A quasisecant method for minimizing nonsmooth functions , 2010, Optim. Methods Softw..
[27] Adil M. Bagirov,et al. A proximal bundle method for nonsmooth DC optimization utilizing nonconvex cutting planes , 2017, J. Glob. Optim..
[28] Adil M. Bagirov,et al. Double Bundle Method for finding Clarke Stationary Points in Nonsmooth DC Programming , 2018, SIAM J. Optim..
[29] Warren Hare,et al. A Redistributed Proximal Bundle Method for Nonconvex Optimization , 2010, SIAM J. Optim..
[30] A. Bagirov,et al. Discrete Gradient Method: Derivative-Free Method for Nonsmooth Optimization , 2008 .
[31] Antonio Fuduli,et al. A DC piecewise affine model and a bundling technique in nonconvex nonsmooth minimization , 2004, Optim. Methods Softw..
[32] C. Beltran,et al. An Effective Line Search for the Subgradient Method , 2005 .
[33] Yurii Nesterov,et al. Primal-dual subgradient methods for convex problems , 2005, Math. Program..
[34] Adil M. Bagirov,et al. Nonsmooth DC programming approach to the minimum sum-of-squares clustering problems , 2016, Pattern Recognit..