Why Quasi-Monte Carlo is Better Than Monte Carlo or Latin Hypercube Sampling for Statistical Circuit Analysis

At the nanoscale, no circuit parameters are truly deterministic; most quantities of practical interest present themselves as probability distributions. Thus, Monte Carlo techniques comprise the strategy of choice for statistical circuit analysis. There are many challenges in applying these techniques efficiently: circuit size, nonlinearity, simulation time, and required accuracy often conspire to make Monte Carlo analysis expensive and slow. Are we-the integrated circuit community-alone in facing such problems? As it turns out, the answer is “no.” Problems in computational finance share many of these characteristics: high dimensionality, profound nonlinearity, stringent accuracy requirements, and expensive sample evaluation. We perform a detailed experimental study of how one celebrated technique from that domain-quasi-Monte Carlo (QMC) simulation-can be adapted effectively for fast statistical circuit analysis. In contrast to traditional pseudorandom Monte Carlo sampling, QMC uses a (shorter) sequence of deterministically chosen sample points. We perform rigorous comparisons with both Monte Carlo and Latin hypercube sampling across a set of digital and analog circuits, in 90 and 45 nm technologies, varying in size from 30 to 400 devices. We consistently see superior performance from QMC, giving 2× to 8× speedup over conventional Monte Carlo for roughly 1% accuracy levels. We present rigorous theoretical arguments that support and explain this superior performance of QMC. The arguments also reveal insights regarding the (low) latent dimensionality of these circuit problems; for example, we observe that over half of the variance in our test circuits is from unidimensional behavior. This analysis provides quantitative support for recent enthusiasm in dimensionality reduction of circuit problems.

[1]  DAVID G. KENDALL,et al.  Introduction to Mathematical Statistics , 1947, Nature.

[2]  M. E. Muller,et al.  A Note on the Generation of Random Normal Deviates , 1958 .

[3]  J. Halton On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals , 1960 .

[4]  J. Hammersley MONTE CARLO METHODS FOR SOLVING MULTIVARIABLE PROBLEMS , 1960 .

[5]  E. Hlawka Funktionen von beschränkter Variatiou in der Theorie der Gleichverteilung , 1961 .

[6]  J. Kiefer On large deviations of the empiric D. F. of vector chance variables and a law of the iterated logarithm. , 1961 .

[7]  Edwin Hewitt,et al.  Real And Abstract Analysis , 1967 .

[8]  I. Sobol On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .

[9]  James L. Massey,et al.  Review of 'Error-Correcting Codes, 2nd edn.' (Peterson, W. W., and Weldon, E. J., Jr.; 1972) , 1973, IEEE Trans. Inf. Theory.

[10]  Franklin A. Graybill,et al.  Theory and Application of the Linear Model , 1976 .

[11]  H. Niederreiter Quasi-Monte Carlo methods and pseudo-random numbers , 1978 .

[12]  I. A. Antonov,et al.  An economic method of computing LPτ-sequences , 1979 .

[13]  G. Reinsel,et al.  Introduction to Mathematical Statistics (4th ed.). , 1980 .

[14]  H. Keng,et al.  Applications of number theory to numerical analysis , 1981 .

[15]  K. Singhal,et al.  Statistical design centering and tolerancing using parametric sampling , 1981 .

[16]  H. Faure Discrépance de suites associées à un système de numération (en dimension s) , 1982 .

[17]  Ieee Circuits,et al.  IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems information for authors , 2018, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[18]  Timothy N. Trick,et al.  A Study of Variance Reduction Techniques for Estimating Circuit Yields , 1983, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[19]  M. Stein Large sample properties of simulations using latin hypercube sampling , 1987 .

[20]  Sung-Mo Kang,et al.  Statistical Performance Modeling and Parametric Yield Estimation of MOS VLSI , 1987, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[21]  Paul Bratley,et al.  Algorithm 659: Implementing Sobol's quasirandom sequence generator , 1988, TOMS.

[22]  H. Niederreiter Low-discrepancy and low-dispersion sequences , 1988 .

[23]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[24]  Hany L. Abdel-Malek,et al.  The ellipsoidal technique for design centering and region approximation , 1991, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[25]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[26]  N. J. Elias Acceptance sampling: An efficient, accurate method for estimating and optimizing parametric yield , 1993, Proceedings of IEEE Custom Integrated Circuits Conference - CICC '93.

[27]  Sung-Mo Kang,et al.  Convexity-based algorithms for design centering , 1993, ICCAD '93.

[28]  Peter Feldmann,et al.  Integrated circuit quality optimization using surface integrals , 1993, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[29]  Robert G. Meyer,et al.  Analysis and Design of Analog Integrated Circuits , 1993 .

[30]  Makoto Matsumoto,et al.  Twisted GFSR generators II , 1994, TOMC.

[31]  N. J. Elias Acceptance sampling: an efficient, accurate method for estimating and optimizing parametric yield /spl lsqb/IC manufacture/spl rsqb/ , 1994 .

[32]  Kurt Antreich,et al.  Circuit analysis and optimization driven by worst-case distances , 1994, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[33]  H. Niederreiter,et al.  A construction of low-discrepancy sequences using global function fields , 1995 .

[34]  S. Tezuka Uniform Random Numbers: Theory and Practice , 1995 .

[35]  Shu Tezuka,et al.  Uniform Random Numbers , 1995 .

[36]  A. Owen Randomly Permuted (t,m,s)-Nets and (t, s)-Sequences , 1995 .

[37]  S. Tezuka,et al.  Toward real-time pricing of complex financial derivatives , 1996 .

[38]  R. Caflisch,et al.  Smoothness and dimension reduction in Quasi-Monte Carlo methods , 1996 .

[39]  A. Owen Scrambled net variance for integrals of smooth functions , 1997 .

[40]  A. Owen,et al.  Valuation of mortgage-backed securities using Brownian bridges to reduce effective dimension , 1997 .

[41]  Fred J. Hickernell,et al.  A generalized discrepancy and quadrature error bound , 1998, Math. Comput..

[42]  P. Glasserman,et al.  A Comparison of Some Monte Carlo and Quasi Monte Carlo Techniques for Option Pricing , 1998 .

[43]  K. Sakui,et al.  A CMOS bandgap reference circuit with sub-1-V operation , 1999 .

[44]  M. Keramat,et al.  A novel approach to efficient yield estimation for microwave integrated circuits , 1999, 42nd Midwest Symposium on Circuits and Systems (Cat. No.99CH36356).

[45]  Fred J. Hickernell,et al.  Extensible Lattice Sequences for Quasi-Monte Carlo Quadrature , 2000, SIAM J. Sci. Comput..

[46]  Richard J. Beckman,et al.  A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code , 2000, Technometrics.

[47]  Kai-Tai Fang,et al.  The effective dimension and quasi-Monte Carlo integration , 2003, J. Complex..

[48]  Paul Glasserman,et al.  Monte Carlo Methods in Financial Engineering , 2003 .

[49]  Art B. Owen,et al.  Variance with alternative scramblings of digital nets , 2003, TOMC.

[50]  Fred J. Hickernell,et al.  Algorithm 823: Implementing scrambled digital sequences , 2003, TOMS.

[51]  Frances Y. Kuo,et al.  Remark on algorithm 659: Implementing Sobol's quasirandom sequence generator , 2003, TOMS.

[52]  G. Ökten,et al.  Randomized quasi-Monte Carlo methods in pricing securities , 2004 .

[53]  Andrzej J. Strojwas,et al.  Projection-based performance modeling for inter/intra-die variations , 2005, ICCAD-2005. IEEE/ACM International Conference on Computer-Aided Design, 2005..

[54]  F. Lemmermeyer Error-correcting Codes , 2005 .

[55]  Joan Borrell,et al.  A fast algorithm to compute irreducible and primitive polynomials in finite fields , 2005, Mathematical systems theory.

[56]  Michael Orshansky,et al.  An efficient algorithm for statistical minimization of total power under timing yield constraints , 2005, Proceedings. 42nd Design Automation Conference, 2005..

[57]  George S. Fishman,et al.  A First Course in Monte Carlo , 2005 .

[58]  Yu Cao,et al.  New Generation of Predictive Technology Model for Sub-45 nm Early Design Exploration , 2006, IEEE Transactions on Electron Devices.

[59]  K. Ravindran,et al.  First-Order Incremental Block-Based Statistical Timing Analysis , 2004, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[60]  Rob A. Rutenbar,et al.  From Finance to Flip Flops: A Study of Fast Quasi-Monte Carlo Methods from Computational Finance Applied to Statistical Circuit Analysis , 2007, 8th International Symposium on Quality Electronic Design (ISQED'07).

[61]  Rob A. Rutenbar,et al.  Beyond Low-Order Statistical Response Surfaces: Latent Variable Regression for Efficient, Highly Nonlinear Fitting , 2007, 2007 44th ACM/IEEE Design Automation Conference.

[62]  J. Jaffari,et al.  On efficient Monte Carlo-based Statistical Static Timing Analysis of digital circuits , 2008, 2008 IEEE/ACM International Conference on Computer-Aided Design.

[63]  Rob A. Rutenbar,et al.  Practical, fast Monte Carlo statistical static timing analysis: Why and how , 2008, 2008 IEEE/ACM International Conference on Computer-Aided Design.

[64]  David Blaauw,et al.  Efficient Monte Carlo based incremental statistical timing analysis , 2008, 2008 45th ACM/IEEE Design Automation Conference.

[65]  I. Sloan,et al.  Low discrepancy sequences in high dimensions: How well are their projections distributed? , 2008 .

[66]  Rob A. Rutenbar,et al.  Novel Algorithms for Fast Statistical Analysis of Scaled Circuits , 2009, Lecture Notes in Electrical Engineering.