Hard limits on the postselectability of optical graph states

Coherent control of large entangled graph states enables a wide variety of quantum information processing tasks, including error-corrected quantum computation. The linear optical approach offers excellent control and coherence, but today most photon sources and entangling gates---required for the construction of large graph states---are probabilistic and rely on postselection. In this work, we provide proofs and heuristics to aid experimental design using postselection. We derive a fundamental limitation on the generation of photonic qubit states using postselected entangling gates: experiments which contain a cycle of postselected gates cannot be postselected. Further, we analyse experiments that use photons from postselected photon pair sources, and lower bound the number of classes of graph state entanglement that are accessible in the non-degenerate case---graph state entanglement classes that contain a tree are are always accessible. Numerical investigation up to 9-qubits shows that the proportion of graph states that are accessible using postselection diminishes rapidly. We provide tables showing which classes are accessible for a variety of up to nine qubit resource states and sources. We also use our methods to evaluate near-term multi-photon experiments, and provide our algorithms for doing so.

[1]  Dirk Schlingemann,et al.  Quantum error-correcting codes associated with graphs , 2000, ArXiv.

[2]  Piotr Migdal,et al.  Multiphoton states related via linear optics , 2014, 1403.3069.

[3]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[4]  Saikat Guha,et al.  Percolation thresholds for photonic quantum computing , 2017, Nature Communications.

[5]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[6]  Mario Krenn,et al.  Quantum Experiments and Graphs: Multiparty States as Coherent Superpositions of Perfect Matchings. , 2017, Physical review letters.

[7]  Sandu Popescu,et al.  A Quantum Delayed-Choice Experiment , 2012, Science.

[8]  Matison,et al.  Experimental Test of Local Hidden-Variable Theories , 1972 .

[9]  T. P. Bodiya,et al.  Scalable Generation of Graph-State Entanglement through Realistic Linear Optics , 2006 .

[10]  Gilbert Labelle,et al.  Combinatorial species and tree-like structures , 1997, Encyclopedia of mathematics and its applications.

[11]  Mercedes Gimeno-Segovia,et al.  From Three-Photon Greenberger-Horne-Zeilinger States to Ballistic Universal Quantum Computation. , 2014, Physical review letters.

[12]  Lars Eirik Danielsen,et al.  Optimal preparation of graph states , 2010, 1011.5464.

[13]  Axel Dahlberg,et al.  Transforming graph states using single-qubit operations , 2018, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[14]  Cheng-Zhi Peng,et al.  Observation of eight-photon entanglement , 2011, Nature Photonics.

[15]  H. Weinfurter,et al.  Observation of three-photon Greenberger-Horne-Zeilinger entanglement , 1998, quant-ph/9810035.

[16]  J. Eisert,et al.  Multiparty entanglement in graph states , 2003, quant-ph/0307130.

[17]  Harald Weinfurter,et al.  Experimental Realization of Interaction‐free Measurements a , 1995 .

[18]  J. Rarity,et al.  Experimental characterization of photonic fusion using fiber sources , 2011, 1112.5580.

[19]  N. K. Langford,et al.  Linear optical controlled- NOT gate in the coincidence basis , 2002 .

[20]  Hong,et al.  Measurement of subpicosecond time intervals between two photons by interference. , 1987, Physical review letters.

[21]  Matthew G. Parker,et al.  Edge local complementation and equivalence of binary linear codes , 2008, Des. Codes Cryptogr..

[22]  A. Zeilinger,et al.  Significant-Loophole-Free Test of Bell's Theorem with Entangled Photons. , 2015, Physical review letters.

[23]  Krister Shalm,et al.  A Loophole-Free Test of Local Realism , 2016 .

[24]  Laura Mančinska,et al.  Multidimensional quantum entanglement with large-scale integrated optics , 2018, Science.

[25]  A. Cayley A theorem on trees , 2009 .

[26]  H. Briegel,et al.  Fast simulation of stabilizer circuits using a graph-state representation , 2005, quant-ph/0504117.

[27]  P. Grangier,et al.  Experimental Realization of Einstein-Podolsky-Rosen-Bohm Gedankenexperiment : A New Violation of Bell's Inequalities , 1982 .

[28]  Matthew G. Parker,et al.  On the classification of all self-dual additive codes over GF(4) of length up to 12 , 2005, J. Comb. Theory, Ser. A.

[29]  Shigeki Takeuchi,et al.  Quantum phase gate for photonic qubits using only beam splitters and postselection , 2001, quant-ph/0111092.

[30]  Bing He,et al.  Weaving independently generated photons into an arbitrary graph state , 2011 .

[31]  Damien Bonneau,et al.  Silicon Quantum Photonics , 2015, IEEE Journal of Selected Topics in Quantum Electronics.

[32]  T. Rudolph,et al.  Resource-efficient linear optical quantum computation. , 2004, Physical review letters.

[33]  Mercedes Gimeno-Segovia,et al.  Physical-depth architectural requirements for generating universal photonic cluster states , 2017, 1706.07325.

[34]  G Weihs,et al.  Experimental demonstration of four-photon entanglement and high-fidelity teleportation. , 2001, Physical review letters.

[35]  Mario Krenn,et al.  Quantum Experiments and Graphs II: Computation and State Generation with Probabilistic Sources and Linear Optics , 2018 .

[36]  Jian-Wei Pan,et al.  Experimental entanglement of six photons in graph states , 2006, quant-ph/0609130.

[37]  Jian-Wei Pan,et al.  Experimental Ten-Photon Entanglement. , 2016, Physical review letters.

[38]  D. Markham,et al.  Graph states for quantum secret sharing , 2008, 0808.1532.

[39]  K.J.Resch,et al.  Experimental One-Way Quantum Computing , 2005, quant-ph/0503126.

[40]  A. I. Lvovsky,et al.  Enlargement of optical Schrödinger's cat states , 2016, Nature Photonics.

[41]  Axel Dahlberg,et al.  How to transform graph states using single-qubit operations: computational complexity and algorithms , 2018, Quantum Science and Technology.

[42]  Ying Li,et al.  Resource costs for fault-tolerant linear optical quantum computing , 2015, 1504.02457.

[43]  Nicolò Spagnolo,et al.  Suppression law of quantum states in a 3D photonic fast Fourier transform chip , 2016, Nature Communications.

[44]  Mario Krenn,et al.  Quantum experiments and graphs II: Quantum interference, computation, and state generation , 2018, Proceedings of the National Academy of Sciences.

[45]  J. Eisert,et al.  Entanglement in Graph States and its Applications , 2006, quant-ph/0602096.

[46]  Bart De Moor,et al.  Graphical description of the action of local Clifford transformations on graph states , 2003, quant-ph/0308151.

[47]  N. J. A. Sloane,et al.  The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..

[48]  Mehdi Mhalla,et al.  Complexity of Graph State Preparation , 2004 .

[49]  André Bouchet Transforming trees by successive local complementations , 1988, J. Graph Theory.