Raman Spectroscopy of Size-Selected Linear Polyyne Molecules C2nH2 (n = 4−6) Encapsulated in Single-Wall Carbon Nanotubes

Polyyne molecules (C2nH2, n = 4−6) encaged inside single-wall carbon nanotubes (SWNTs) are investigated by Raman spectroscopy. The Raman bands observed in the region of 2000−2200 cm-1 are identified as due to axial-stretching fundamentals, ν2−ν4 (σg in D∞h), of the linear carbon molecules. For C10H2 and C12H2, the overtone bands at ∼4100 cm-1 and combination bands of the polyyne and graphitic modes at ∼3600 cm-1 are also observed. The two-phonon excitations may be responsible for the observed resonance Raman peaks via new electronic states generated by the dispersion interaction exerted between encapsulated polyynes and nanotubes. The vibrational frequencies of the polyyne molecules in SWNTs increase as the diameter distributions of SWNTs decrease. The interaction is also responsible for the observed frequency shifts and broadening of the Raman bands.

[1]  S. Hayashi,et al.  Resonance Raman spectra of polyyne molecules C10H2 and C12H2 in solution , 2007 .

[2]  M. Fujii,et al.  Raman and surface-enhanced Raman scattering of a series of size-separated polyynes , 2006 .

[3]  M. Sakata,et al.  Single-wall carbon nanotubes encaging linear chain C10H2 polyyne molecules inside , 2006 .

[4]  M. Kertész,et al.  Bond length alternation and energy band gap of polyyne. , 2006, The journal of physical chemistry. A.

[5]  M. Fujii,et al.  Surface-enhanced Raman scattering from polyyne solutions , 2006 .

[6]  Yang Wang,et al.  Structural and electronic properties of carbon nanowires made of linear carbon chains enclosed inside zigzag carbon nanotubes , 2006 .

[7]  M. Fujii,et al.  Laser ablation of diamond particles suspended in ethanol: Effective formation of long polyynes , 2006 .

[8]  G. Zerbi,et al.  Raman and SERS investigation of isolated sp carbon chains , 2006 .

[9]  M. Kertész,et al.  Bond-length alternation and charge transfer in a linear carbon chain encapsulated within a single-walled carbon nanotube , 2005 .

[10]  F. Simon,et al.  Fine structure of the radial breathing mode of double-wall carbon nanotubes , 2005, cond-mat/0508217.

[11]  S. Kawata,et al.  Polarization measurements in tip-enhanced Raman spectroscopy applied to single-walled carbon nanotubes , 2005 .

[12]  J. Ihm,et al.  Encapsulation and polymerization of acetylene molecules inside a carbon nanotube , 2005, cond-mat/0506748.

[13]  Y. Tobe,et al.  Size-selective formation of C78 fullerene from a three-dimensional polyyne precursor. , 2005, Chemistry.

[14]  Z. Cao,et al.  Linear and nonlinear feature of electronic excitation energy in carbon chains HC2n+1H and HC2nH , 2004 .

[15]  P. Milani,et al.  Chemical and thermal stability of carbyne-like structures in cluster-assembled carbon films , 2004 .

[16]  W. Krätschmer,et al.  Flashing Carbon on Cold Surfaces , 2004 .

[17]  T. Schmidt,et al.  Towards bulk behaviour of long hydrogenated carbon chains , 2003 .

[18]  Y. Aoyagi,et al.  High-yield production of single-wall carbon nanotubes in nitrogen gas , 2003 .

[19]  D. Tománek,et al.  Energetics and bandstructure for a polyacetylene chain enclosed inside a carbon nanotube , 2003 .

[20]  D. Tománek,et al.  Energetics and electronic structure of a polyacetylene chain contained in a carbon nanotube , 2003 .

[21]  C E Bottani,et al.  Cluster-beam deposition and in situ characterization of carbyne-rich carbon films. , 2002, Physical review letters.

[22]  Seong-Ho Yoon,et al.  Formation of hydrogen-capped polyynes by laser ablation of graphite particles suspended in solution , 2002 .

[23]  Masako Yudasaka,et al.  Raman scattering study of double-wall carbon nanotubes derived from the chains of fullerenes in single-wall carbon nanotubes , 2001 .

[24]  W. Krätschmer,et al.  High-yield fullerene encapsulation in single-wall carbon nanotubes , 2001 .

[25]  Charles M. Lieber,et al.  Structural ( n, m) determination of isolated single-wall carbon nanotubes by resonant Raman scattering. , 2001, Physical review letters.

[26]  Cheng,et al.  Polarized raman study of single-wall semiconducting carbon nanotubes , 2000, Physical review letters.

[27]  Pascale Ehrenfreund,et al.  A voyage from dark clouds to the early Earth , 2000 .

[28]  Young Hee Lee,et al.  Crystalline Ropes of Metallic Carbon Nanotubes , 1996, Science.

[29]  Y. Achiba,et al.  Structures of Carbon Soot Prepared by Laser Ablation , 1996 .

[30]  S. C. O'brien,et al.  C60: Buckminsterfullerene , 1985, Nature.

[31]  S. Kwok,et al.  Detection of HC11N in IRC + 10°216 , 1982, Nature.

[32]  H. Kroto,et al.  The detection of HC 9 N in interstellar space. , 1978 .

[33]  H. Kroto,et al.  Detection of the heavy interstellar molecule cyanodiacetylene. , 1976 .

[34]  F. Cataldo Synthesis of polyynes in a submerged electric arc in organic solvents , 2004 .

[35]  Hiromichi Kataura,et al.  Diameter control of single-walled carbon nanotubes , 2000 .

[36]  B. Turner DETECTION OF INTERSTELLAR CYANOACETYLENE. , 1971 .