Analysis of room temperature magnetic regenerative refrigeration

Results of a room temperature magnetic refrigeration test bed and an analysis using a computational model are presented. A detailed demonstration of the four sequential processes in the transient magnetocaloric regeneration process of a magnetic material is presented. The temperature profile during the transient approach to steady state operation was measured in detail. A 5 °C evolution of the difference of temperature between the hot end and the cold end of the magnetocaloric bed due to regeneration is reported. A model is developed for the heat transfer and fluid mechanics of the four sequential processes in each cycle of thermal wave propagation in the regenerative bed combined with the magnetocaloric effect. The basic equations that can be used in simulation of magnetic refrigeration systems are derived and the design parameters are discussed.

[1]  T. Veziroglu,et al.  Design optimization of a 0.1-ton/day active magnetic regenerative hydrogen liquefier , 2000 .

[2]  Xavier Bohigas,et al.  Room-temperature magnetic refrigerator using permanent magnets , 2000 .

[3]  K. Ito,et al.  Development of magnetic refrigerator for room temperature application , 2002 .

[4]  J. E. O'Brien,et al.  Low Reynolds number flow heat exchangers: Eds. S. Kakac, R. K. Shah and A. E. Bergles , 1984 .

[5]  G. V. Brown Magnetic heat pumping near room temperature , 1976 .

[6]  K. Gschneidner,et al.  Effect of alloying on the giant magnetocaloric effect of Gd5(Si2Ge2) , 1997 .

[7]  C. Zimm,et al.  Test Results on a 50K Magnetic Refrigerator , 1996 .

[8]  Geoffrey F. Green,et al.  A Gadolinium-Terbium Active Regenerator , 1990 .

[9]  Karl A. Gschneidner,et al.  Magnetocaloric effect and magnetic refrigeration , 1999 .

[10]  L. H. Bennett,et al.  Modeling of magnetization and demagnetization in magnetic regenerative refrigeration , 2004, IEEE Transactions on Magnetics.

[11]  Xiangzhao Meng,et al.  Review on research of room temperature magnetic refrigeration , 2003 .

[12]  Robert D. Shull,et al.  Reduction of hysteresis losses in the magnetic refrigerant Gd5Ge2Si2 by the addition of iron , 2004, Nature.

[13]  J. A. Barclay,et al.  Selection of regenerator geometry for magnetic refrigerator applications , 1984 .

[14]  A. Degregoria,et al.  Test Results of an Active Magnetic Regenerative Refrigerator , 1992 .

[15]  X. Bohigas,et al.  Tunable magnetocaloric effect in ceramic perovskites , 1998 .

[16]  J. M. Fournier,et al.  A magnet-based device for active magnetic regenerative refrigeration , 2003 .

[17]  R. E. Watson,et al.  Monte Carlo and mean-field calculations of the magnetocaloric effect of ferromagnetically interacting clusters , 1992 .

[18]  M. E. Wood,et al.  General analysis of magnetic refrigeration and its optimization using a new concept: maximization of refrigerant capacity , 1985 .

[19]  T.E.W. Schumann,et al.  Heat transfer: A liquid flowing through a porous prism , 1929 .

[20]  R. Chahine,et al.  Composite materials for Ericsson-like magnetic refrigeration cycle , 1997 .

[21]  K. Gschneidner,et al.  Description and Performance of a Near-Room Temperature Magnetic Refrigerator , 1998 .

[22]  J. Hull,et al.  Magnetic heat pumps for near-room-temperature applications , 1989 .

[23]  H. Wada,et al.  Extremely Large Magnetic Entropy Change of MnAs1-xSbx near Room Temperature. , 2002 .

[24]  S. M. Benford,et al.  T‐S diagram for gadolinium near the Curie temperature , 1981 .

[25]  C. Zimm,et al.  High temperature superconducting magnetic refrigeration , 2002 .

[26]  S. K. Fischer Not-In-Kind Technologies for Residential and Commercial Unitary Equipment , 2001 .

[27]  L. H. Bennett,et al.  Room temperature active regenerative magnetic refrigeration: Magnetic nanocomposites , 2003 .

[28]  Clifford Goodman,et al.  American Society of Mechanical Engineers , 1988 .

[29]  J. Panek,et al.  A compact, high-performance continuous magnetic refrigerator for space missions , 2001 .

[30]  S. Whitaker Forced convection heat transfer correlations for flow in pipes, past flat plates, single cylinders, single spheres, and for flow in packed beds and tube bundles , 1972 .