SemEval-2013 Task 11: Word Sense Induction and Disambiguation within an End-User Application

In this paper we describe our Semeval-2013 task on Word Sense Induction and Disambiguation within an end-user application, namely Web search result clustering and diversification. Given a target query, induction and disambiguation systems are requested to cluster and diversify the search results returned by a search engine for that query. The task enables the end-to-end evaluation and comparison of systems.

[1]  Roberto Navigli A Quick Tour of Word Sense Disambiguation, Induction and Related Approaches , 2012, SOFSEM.

[2]  R. Navigli,et al.  A structural approach to the automatic adjudication of word sense disagreements , 2008, Natural Language Engineering.

[3]  Silvia Bernardini,et al.  The WaCky wide web: a collection of very large linguistically processed web-crawled corpora , 2009, Lang. Resour. Evaluation.

[4]  Claudio Carpineto,et al.  Full-Subtopic Retrieval with Keyphrase-Based Search Results Clustering , 2009, 2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology.

[5]  Xiaoying Gao,et al.  Improving Web clustering by cluster selection , 2005, The 2005 IEEE/WIC/ACM International Conference on Web Intelligence (WI'05).

[6]  Simone Paolo Ponzetto,et al.  BabelNet: The automatic construction, evaluation and application of a wide-coverage multilingual semantic network , 2012, Artif. Intell..

[7]  Eneko Agirre,et al.  Semeval-2007 Task 2 : Evaluating Word Sense Induction and Discrimination , 2007 .

[8]  Suresh Manandhar,et al.  SemEval-2010 Task 14: Word Sense Induction &Disambiguation , 2010, SemEval@ACL.

[9]  Gerhard Weikum,et al.  YAGO: A Large Ontology from Wikipedia and WordNet , 2008, J. Web Semant..

[10]  William M. Rand,et al.  Objective Criteria for the Evaluation of Clustering Methods , 1971 .

[11]  Roberto Navigli,et al.  Clustering and Diversifying Web Search Results with Graph-Based Word Sense Induction , 2013, CL.

[12]  P. Jaccard,et al.  Etude comparative de la distribution florale dans une portion des Alpes et des Jura , 1901 .

[13]  J. Fleiss Measuring nominal scale agreement among many raters. , 1971 .

[14]  Roberto Navigli,et al.  Word sense disambiguation: A survey , 2009, CSUR.

[15]  J. R. Landis,et al.  The measurement of observer agreement for categorical data. , 1977, Biometrics.

[16]  Martha Palmer,et al.  The English all-words task , 2004, SENSEVAL@ACL.

[17]  John D. Lafferty,et al.  Beyond independent relevance: methods and evaluation metrics for subtopic retrieval , 2003, SIGIR.

[18]  Jens Lehmann,et al.  DBpedia - A crystallization point for the Web of Data , 2009, J. Web Semant..

[19]  Alexander Dekhtyar,et al.  Information Retrieval , 2018, Lecture Notes in Computer Science.

[20]  Adam Kilgarriff,et al.  Introduction to the special issue on evaluating word sense disambiguation systems , 2002, Natural Language Engineering.

[21]  Roberto Navigli,et al.  Inducing Word Senses to Improve Web Search Result Clustering , 2010, EMNLP.

[22]  M. Cugmas,et al.  On comparing partitions , 2015 .