A tuning strategy for multivariable PI and PID controllers using differential evolution combined with chaotic Zaslavskii map

Abstract A technique for tuning of decoupled proportional-integral (PI) and proportional-integral-derivative (PID) multivariable controllers based on a chaotic differential evolution (DE) approach is presented in this paper. Due to the simple concept, easy implementation and quick convergence, nowadays DE has gained much attention and wide application in solving continuous non-linear optimization problems. However, the performance of DE greatly depends on its control parameters and it often suffers from being trapped in local optimum. The application of chaotic sequences based on chaotic Zaslavskii map instead of random sequences in DE is a powerful strategy to diversify the population and improve the DE’s performance in preventing premature convergence to local optima. The optimized PD and PID controllers shows good closed-loop responses in control of the binary Wood–Berry distillation column, a multivariable process with strong interactions between input and output pairs. Some comparison results of PD and PID tuning using chaotic DE, classical DE and genetic algorithm are presented and discussed.

[1]  Zhiqiang Gao,et al.  A Practical Approach to Disturbance Decoupling Control , 2009 .

[2]  G. Zaslavsky The simplest case of a strange attractor , 1978 .

[3]  Rakesh Angira,et al.  Optimization of dynamic systems: A trigonometric differential evolution approach , 2007, Comput. Chem. Eng..

[4]  R. Storn,et al.  Differential Evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces , 2004 .

[5]  J. B. Gomm,et al.  Solution to the Shell standard control problem using genetically tuned PID controllers , 2002 .

[6]  Pedro Paulo Balestrassi,et al.  Electricity demand and spot price forecasting using evolutionary computation combined with chaotic nonlinear dynamic model , 2010 .

[7]  L. Coelho,et al.  PID control design for chaotic synchronization using a tribes optimization approach , 2009 .

[8]  Hernán De Battista,et al.  Sliding Mode Compensation for Windup and Direction of Control Problems in Two-Input−Two-Output Proportional−Integral Controllers , 2002 .

[9]  S. Lakshminarayanan,et al.  Estimating performance enhancement with alternate control strategies for multiloop control systems , 2007 .

[10]  Alberto Herreros,et al.  Design of PID-type controllers using multiobjective genetic algorithms. , 2002, ISA transactions.

[11]  Leandro dos Santos Coelho,et al.  Improved differential evolution algorithms for handling economic dispatch optimization with generator constraints , 2007 .

[12]  Daobo Wang,et al.  Novel approach to nonlinear PID parameter optimization using ant colony optimization algorithm , 2006 .

[13]  Leandro dos Santos Coelho,et al.  Improved differential evolution approach based on cultural algorithm and diversity measure applied to solve economic load dispatch problems , 2009, Math. Comput. Simul..

[14]  P. B. Deshpande,et al.  Computer Process Control With Advanced Control Applications , 1988 .

[15]  Jay H. Lee,et al.  Tuning of model predictive controllers for robust performance , 1994 .

[16]  Janez Brest,et al.  Self-Adapting Control Parameters in Differential Evolution: A Comparative Study on Numerical Benchmark Problems , 2006, IEEE Transactions on Evolutionary Computation.

[17]  Paulo Ferreira,et al.  Multiobjective H/sub 2//H/sub /spl infin// guaranteed cost PID design , 1997 .

[18]  Patrick Lyonnet,et al.  Robust PID controller tuning based on the heuristic Kalman algorithm , 2009, Autom..

[19]  Hale Hapoglu,et al.  Self-tuning PID control of jacketed batch polystyrene reactor using genetic algorithm , 2008 .

[20]  William L. Luyben,et al.  Simple method for tuning SISO controllers in multivariable systems , 1986 .

[21]  Tore Hägglund,et al.  The future of PID control , 2000 .

[22]  B. V. Babu,et al.  Modified differential evolution (MDE) for optimization of non-linear chemical processes , 2006, Comput. Chem. Eng..

[23]  Chung-Shi Tseng,et al.  Robust PID control design for permanent magnet synchronous motor: A genetic approach , 2008 .

[24]  Joseph Aguilar-Martin,et al.  A simplified version of mamdani's fuzzy controller: the natural logic controller , 2006, IEEE Transactions on Fuzzy Systems.

[25]  N. Munro,et al.  PID controllers: recent tuning methods and design to specification , 2002 .

[26]  P. Grassberger,et al.  Measuring the Strangeness of Strange Attractors , 1983 .

[27]  L. Coelho,et al.  An improved harmony search algorithm for synchronization of discrete-time chaotic systems , 2009 .

[28]  Sunan Wang,et al.  Self-organizing genetic algorithm based tuning of PID controllers , 2009, Inf. Sci..

[29]  D. Cooper,et al.  A Tuning Strategy for Unconstrained SISO Model Predictive Control , 1997 .

[30]  Hamidreza Modares,et al.  Parameter identification of chaotic dynamic systems through an improved particle swarm optimization , 2010, Expert Syst. Appl..

[31]  P. Wang,et al.  Optimal Design of PID Process Controllers based on Genetic Algorithms , 1993 .

[32]  L. Coelho A quantum particle swarm optimizer with chaotic mutation operator , 2008 .

[33]  Karl Johan Åström,et al.  PID Controllers: Theory, Design, and Tuning , 1995 .

[34]  Bruce E. Postlethwaite,et al.  Control of MIMO Dead Time Processes Using Fuzzy Relational Models , 2002, Advances in Computational Intelligence and Learning.

[35]  Wei-Der Chang,et al.  A multi-crossover genetic approach to multivariable PID controllers tuning , 2007, Expert Syst. Appl..

[36]  Toshiharu Sugie,et al.  Robust PID controller tuning based on the constrained particle swarm optimization , 2008, Autom..

[37]  E. Ott,et al.  Dimension of Strange Attractors , 1980 .

[38]  Yung-Yaw Chen,et al.  Design of PID controller for precision positioning table using genetic algorithms , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[39]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[40]  Wiley E. Thompson,et al.  An intelligent controller design based on genetic algorithms , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[41]  Leandro dos Santos Coelho,et al.  Automatic tuning of PID and gain scheduling PID controllers by a derandomized evolution strategy , 1999, Artificial Intelligence for Engineering Design, Analysis and Manufacturing.

[42]  Ian Flood,et al.  Queuing network analysis for waterways with artificial neural networks , 1999, Artif. Intell. Eng. Des. Anal. Manuf..

[43]  Lixiang Li,et al.  A multi-objective chaotic particle swarm optimization for environmental/economic dispatch , 2009 .

[44]  Wenjian Luo,et al.  Differential evolution with dynamic stochastic selection for constrained optimization , 2008, Inf. Sci..

[45]  Antonin Ponsich,et al.  Differential Evolution performances for the solution of mixed-integer constrained process engineering problems , 2011, Appl. Soft Comput..

[46]  Leandro dos Santos Coelho,et al.  Solving economic load dispatch problems in power systems using chaotic and Gaussian particle swarm optimization approaches , 2008 .

[47]  Qing-Guo Wang,et al.  Auto-tuning of multivariable PID controllers from decentralized relay feedback , 1997, Autom..

[48]  Fernando Daniel Bianchi,et al.  Multivariable PID control with set-point weighting via BMI optimisation , 2008, Autom..

[49]  W. Zuo,et al.  Multivariable adaptive control for a space station using genetic algorithms , 1995 .

[50]  Renato A. Krohling,et al.  Design of optimal disturbance rejection PID controllers using genetic algorithms , 2001, IEEE Trans. Evol. Comput..

[51]  Andries Petrus Engelbrecht,et al.  Bare bones differential evolution , 2009, Eur. J. Oper. Res..

[52]  Qi Wu,et al.  A hybrid-forecasting model based on Gaussian support vector machine and chaotic particle swarm optimization , 2010, Expert Syst. Appl..

[53]  Min Xu,et al.  Auto-tuning of PID controller parameters with supervised receding horizon optimization. , 2005, ISA transactions.

[54]  R. K. Wood,et al.  Terminal composition control of a binary distillation column , 1973 .

[55]  W. Chang PID control for chaotic synchronization using particle swarm optimization , 2009 .

[56]  Kindtoken Hwai-Der Liu,et al.  Reaction Pathways of Butane/Butenes Formation in Catalytic Denitrogenation of n-Butylamine , 1986 .

[57]  R. Toscano A simple robust PI/PID controller design via numerical optimization approach , 2004 .

[58]  Niahn-Chung Shieh,et al.  GA-Based Multiobjective PID Control for a Linear , 2003 .