All-cellulose nanocomposites by surface selective dissolution of bacterial cellulose

All-cellulose nanocomposites using bacterial cellulose (BC) as a single raw material were prepared by a surface selective dissolution method. The effect of the immersion time of BC in the solvent (lithium chloride/N,N-dimethylacetamide) during preparation on the nanocomposite properties was investigated. The structure, morphology and mechanical properties of the nanocomposites were characterized by X-ray diffraction, scanning electron microscopy, and tensile testing. The optimum immersion time of 10 min allowed the preparation of nanocomposites with an average tensile strength of 411 MPa and Young’s modulus of 18 GPa. With the longest immersion time of 60 min, the prepared composite sheet turns to express a very high toughness characteristic possessing a work-to-fracture as high as 16 MJ/m3. These biobased nanocomposites show high performances thanks to their unique structure and properties.

[1]  J. Sugiyama,et al.  Structural modification of bacterial cellulose , 2000 .

[2]  A. Błędzki,et al.  Composites reinforced with cellulose based fibres , 1999 .

[3]  K. Nakamae,et al.  Kenaf reinforced biodegradable composite , 2003 .

[4]  Alain Dufresne,et al.  Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. , 2005, Biomacromolecules.

[5]  K. Nakamae,et al.  Elastic modulus of the crystalline regions of cellulose polymorphs , 1995 .

[6]  Dae-Young Kim,et al.  Surface acetylation of bacterial cellulose , 2002 .

[7]  W. Winter,et al.  Nanocomposites of Cellulose Acetate Butyrate Reinforced with Cellulose Nanocrystals , 2002 .

[8]  T. Peijs,et al.  All-cellulose composites of regenerated cellulose fibres by surface selective dissolution , 2009 .

[9]  Stephen J. Eichhorn,et al.  An estimation of the Young’s modulus of bacterial cellulose filaments , 2008 .

[10]  J. Keckes,et al.  Tensile properties of cellulose acetate butyrate composites reinforced with bacterial cellulose , 2004 .

[11]  L. Hu,et al.  Effect of addition of sodium alginate on bacterial cellulose production by Acetobacter xylinum , 2007, Journal of Industrial Microbiology & Biotechnology.

[12]  I. Ward,et al.  Novel composites by hot compaction of fibers , 1997 .

[13]  Y. Nishi,et al.  The structure and mechanical properties of sheets prepared from bacterial cellulose , 1990 .

[14]  A. Dupont Cellulose in lithium chloride/N,N-dimethylacetamide, optimisation of a dissolution method using paper substrates and stability of the solutions , 2003 .

[15]  T. Peijs,et al.  All-cellulose composites by surface selective dissolution of aligned ligno-cellulosic fibres , 2008 .

[16]  Xiaodong Cao,et al.  Morphological, thermal and mechanical properties of ramie crystallites—reinforced plasticized starch biocomposites , 2006 .

[17]  N. Cabrera,et al.  The mechanical properties of unidirectional all-polypropylene composites , 2006 .

[18]  Masatoshi Iguchi,et al.  Bacterial cellulose—a masterpiece of nature's arts , 2000 .

[19]  L. Avérous,et al.  Biocomposites based on plasticized starch: thermal and mechanical behaviours , 2004 .

[20]  Rainer Jonas,et al.  Production and application of microbial cellulose , 1998 .

[21]  S. Kuga,et al.  Mercerization and acid hydrolysis of bacterial cellulose , 1997 .

[22]  W. Wan,et al.  The polyvinyl alcohol-bacterial cellulose system as a new nanocomposite for biomedical applications. , 2006, Journal of biomedical materials research. Part B, Applied biomaterials.

[23]  Wim Thielemans,et al.  Sisal cellulose whiskers reinforced polyvinyl acetate nanocomposites , 2006 .

[24]  Marielle Henriksson,et al.  Cellulose nanopaper structures of high toughness. , 2008, Biomacromolecules.

[25]  I. Ward,et al.  The science and technology of hot compaction , 2004 .

[26]  Y. Huang,et al.  Biomimetic synthesis of hydroxyapatite/bacterial cellulose nanocomposites for biomedical applications , 2007 .

[27]  S. Ribeiro,et al.  Thermal characterization of bacterial cellulose–phosphate composite membranes , 2007 .

[28]  T. Nishino,et al.  All-Cellulose Composite , 2004 .

[29]  T. Nishino,et al.  All-cellulose composite prepared by selective dissolving of fiber surface. , 2007, Biomacromolecules.

[30]  T. Peijs,et al.  Environmental Durability of Flax Fibres and their Composites based on Polypropylene Matrix , 2000 .

[31]  T. Peijs,et al.  The effect of fibre volume fraction and mercerization on the properties of all-cellulose composites , 2008 .

[32]  Y. Nishi,et al.  The structure and mechanical properties of sheets prepared from bacterial cellulose , 1989 .

[33]  P. Supaphol,et al.  Preparation and characterization of jute- and flax-reinforced starch-based composite foams , 2004 .

[34]  Kunihiko Watanabe,et al.  Structural Features and Properties of Bacterial Cellulose Produced in Agitated Culture , 1998 .

[35]  J. Yeh,et al.  Preparation and properties of poly(vinyl alcohol)–clay nanocomposite materials , 2003 .

[36]  J. Yeum,et al.  Poly(vinyl acetate)/poly(vinyl alcohol)/montmorillonite nanocomposite microspheres prepared by suspension polymerization and saponification , 2007 .

[37]  Ton Peijs,et al.  Natural-fibre-mat-reinforced thermoplastic composites based on flax fibres and polypropylene , 1996 .

[38]  Liang Hong,et al.  Synthesis and characterization of hydroxyapatite–bacterial cellulose nanocomposites , 2006 .

[39]  T. Peijs,et al.  Mechanical Properties of Natural-Fibre-Mat- Reinforced Thermoplastics based on Flax Fibres and Polypropylene , 2000 .

[40]  K. Oksman,et al.  Manufacturing process of cellulose whiskers/polylactic acid nanocomposites , 2006 .

[41]  T. Peijs,et al.  Influence of the Processing Conditions on the Mechanical Properties of Chitin Whisker Reinforced Poly(caprolactone) Nanocomposites , 2007 .

[42]  M.J.A. van den Oever,et al.  Thermoplastic composites based on flax fibres and polypropylene: Influence of fibre length and fibre volume fraction on mechanical properties , 1998 .

[43]  R. Schalek,et al.  Biodegradable nanocomposites from cellulose acetate: Mechanical, morphological, and thermal properties , 2006 .

[44]  Ton Peijs,et al.  Composites for recyclability , 2003 .

[45]  T. Peijs Natural Fiber Based Composites , 2000 .

[46]  Ton Peijs,et al.  Processing of all-polypropylene composites for ultimate recyclability , 2004 .

[47]  A. Mohanty,et al.  Surface modification of jute and its influence on performance of biodegradable jute-fabric/Biopol composites , 2000 .

[48]  W. Wan,et al.  Measurement of the elastic modulus of single bacterial cellulose fibers using atomic force microscopy. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[49]  D. Klemm,et al.  Cellulose: fascinating biopolymer and sustainable raw material. , 2005, Angewandte Chemie.

[50]  William J. Orts,et al.  Application of Cellulose Microfibrils in Polymer Nanocomposites , 2005 .

[51]  N.-M. Barkoula,et al.  The mechanical properties of woven tape all-polypropylene composites , 2007 .

[52]  T. Peijs,et al.  Biocomposites Based on Bacterial Cellulose and Apple and Radish Pulp , 2007 .

[53]  A. N. Nakagaito,et al.  Bacterial cellulose: the ultimate nano-scalar cellulose morphology for the production of high-strength composites , 2005 .

[54]  Caroline Baillie,et al.  On the mechanical properties, deformation and fracture of a natural fibre/recycled polymer composite , 2003 .

[55]  Jozef Keckes,et al.  All-cellulose nanocomposite , 2005 .