On the arithmetic-geometric index of graphs

Very recently, the first geometric-arithmetic index $GA$ and arithmetic-geometric index $AG$ were introduced in mathematical chemistry. In the present paper, we first obtain some lower and upper bounds on $AG$ and characterize the extremal graphs. We also establish various relations between $AG$ and other topological indices, such as the first geometric-arithmetic index $GA$, atom-bond-connectivity index $ABC$, symmetric division deg index $SDD$, chromatic number $\chi$ and so on. Finally, we present some sufficient conditions of $GA(G)>GA(G-e)$ or $AG(G)>AG(G-e)$ for an edge $e$ of a graph $G$. In particular, for the first geometric-arithmetic index, we also give a refinement of Bollobas-Erdős-type theorem obtained in [3].

[1]  D. Cvetkovic,et al.  Graph theory and molecular orbitals , 1974 .

[2]  I. Gutman,et al.  Graph theory and molecular orbitals. Total φ-electron energy of alternant hydrocarbons , 1972 .

[3]  I. Gutman,et al.  Graph theory and molecular orbitals. XII. Acyclic polyenes , 1975 .

[4]  M. Randic Characterization of molecular branching , 1975 .

[5]  Ernesto Estrada,et al.  AN ATOM-BOND CONNECTIVITY INDEX : MODELLING THE ENTHALPY OF FORMATION OF ALKANES , 1998 .

[6]  S. Dragomir A Survey on Cauchy-Buniakowsky-Schwartz Type Discrete Inequalities , 2003 .

[7]  N. Trinajstic,et al.  On reformulated Zagreb indices , 2004, Molecular Diversity.

[8]  Ante Graovac,et al.  Atom-bond connectivity index of trees , 2009, Discret. Appl. Math..

[9]  D. Vukicevic,et al.  Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of edges , 2009 .

[10]  Ardeshir Dolati,et al.  Szeged index, edge Szeged index, and semi-star trees , 2010, Discret. Appl. Math..

[11]  N. Trinajstic,et al.  Comparison between first geometric–arithmetic index and atom-bond connectivity index , 2010 .

[12]  D. Vukicevic,et al.  Bond Additive Modeling 2. Mathematical Properties of Max-min Rodeg Index , 2010 .

[13]  Sang-Gu Lee,et al.  Comparing Zagreb indices for connected graphs , 2010, Discret. Appl. Math..

[14]  Tomaz Pisanski,et al.  Use of the Szeged index and the revised Szeged index for measuring network bipartivity , 2010, Discret. Appl. Math..

[15]  Kinkar Chandra Das,et al.  Atom-bond connectivity index of graphs , 2010, Discret. Appl. Math..

[16]  Kinkar Chandra Das,et al.  On the first geometric-arithmetic index of graphs , 2011, Discret. Appl. Math..

[17]  I. Gutman,et al.  Survey on Geometric-Arithmetic Indices of Graphs , 2011 .

[18]  Hanyuan Deng,et al.  On the harmonic index and the chromatic number of a graph , 2013, Discret. Appl. Math..

[19]  Xiaojing Yang,et al.  Randić index and coloring number of a graph , 2014, Discret. Appl. Math..

[20]  Qing Cui,et al.  On a relation between the atom-bond connectivity and the first geometric-arithmetic indices , 2015, Discret. Appl. Math..

[21]  G. Sridhara,et al.  Computation of topological indices of Graphene , 2015 .

[22]  V. Shigehalli,et al.  Computation of New Degree-Based Topological Indices of Graphene , 2016 .

[23]  Jose Maria Sigarreta,et al.  Spectral properties of geometric-arithmetic index , 2016, Appl. Math. Comput..

[24]  Z. Raza,et al.  Further Inequalities Between Vertex-Degree-Based Topological Indices , 2014, 1401.7511.

[25]  Mustapha Aouchiche,et al.  The geometric-arithmetic index and the chromatic number of connected graphs , 2016, Discret. Appl. Math..

[26]  I. Gutman,et al.  Degree-based energies of graphs , 2018, Linear Algebra and its Applications.

[27]  Yin Chen,et al.  On the geometric-arithmetic index of a graph , 2019, Discret. Appl. Math..