Natural Generalizations of Threshold Secret Sharing

We present new families of access structures that, similarly to the multilevel and compartmented access structures introduced in previous works, are natural generalizations of threshold secret sharing. Namely, they admit ideal linear secret sharing schemes over every large enough finite field, they can be described by a small number of parameters, and they have useful properties for the applications of secret sharing. The use of integer polymatroids makes it possible to find many new such families and it simplifies in great measure the proofs for the existence of ideal secret sharing schemes for them.

[1]  Carles Padró,et al.  On secret sharing schemes, matroids and polymatroids , 2006, J. Math. Cryptol..

[2]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[3]  Josh Benaloh,et al.  Generalized Secret Sharing and Monotone Functions , 1990, CRYPTO.

[4]  Axthonv G. Oettinger,et al.  IEEE Transactions on Information Theory , 1998 .

[5]  A. Schrijver A Course in Combinatorial Optimization , 1990 .

[6]  Ehud D. Karnin,et al.  On secret sharing systems , 1983, IEEE Trans. Inf. Theory.

[7]  C. Xing,et al.  On the representability of the bi-uniform matroid , 2014, 1407.7283.

[8]  Simeon Ball ON LARGE SUBSETS OF A FINITE VECTOR SPACE IN WHICH EVERY SUBSET OF BASIS SIZE IS A BASIS , 2010 .

[9]  B. V. Raghavendra Rao,et al.  On the Complexity of Matroid Isomorphism Problems , 2009, CSR.

[10]  V. Shoup New algorithms for finding irreducible polynomials over finite fields , 1990 .

[11]  Ernest F. Brickell,et al.  On the classification of ideal secret sharing schemes , 1989, Journal of Cryptology.

[12]  Douglas R. Stinson,et al.  An explication of secret sharing schemes , 1992, Des. Codes Cryptogr..

[13]  Tamir Tassa,et al.  Characterizing Ideal Weighted Threshold Secret Sharing , 2008, SIAM J. Discret. Math..

[14]  JM Jeroen Doumen,et al.  Some applications of coding theory in cryptography , 2003 .

[15]  Jan De Beule,et al.  On sets of vectors of a finite vector space in which every subset of basis size is a basis II , 2012, Des. Codes Cryptogr..

[16]  Nira Dyn,et al.  Multipartite Secret Sharing by Bivariate Interpolation , 2008, Journal of Cryptology.

[17]  Rita Vincenti,et al.  Three-level secret sharing schemes from the twisted cubic , 2010, Discret. Math..

[18]  R. D. Cruz On secret sharing schemes and linear codes. , 2013 .

[19]  James W. P. Hirschfeld,et al.  The Main Conjecture for MDS Codes , 1995, IMACC.

[20]  Suresh C. Kothari,et al.  Generalized Linear Threshold Scheme , 1985, CRYPTO.

[21]  Adi Shamir,et al.  How to share a secret , 1979, CACM.

[22]  Siaw-Lynn Ng Ideal secret sharing schemes with multipartite access structures , 2006 .

[23]  Amos Beimel,et al.  Secret-Sharing Schemes: A Survey , 2011, IWCC.

[24]  Carles Padró,et al.  Secret Sharing Schemes with Bipartite Access Structure , 1998, EUROCRYPT.

[25]  B. Segre Curve razionali normali ek-archi negli spazi finiti , 1955 .

[26]  Michael J. Collins A Note on Ideal Tripartite Access Structures , 2002, IACR Cryptol. ePrint Arch..

[27]  Takayuki Hibi,et al.  Discrete Polymatroids , 2002 .

[28]  Gustavus J. Simmons,et al.  How to (Really) Share a Secret , 1988, CRYPTO.

[29]  Albrecht Beutelspacher,et al.  On 2-level secret sharing , 1993, Des. Codes Cryptogr..

[30]  Keith M. Martin,et al.  Geometric secret sharing schemes and their duals , 1994, Des. Codes Cryptogr..

[31]  Ernest F. Brickell,et al.  Some Ideal Secret Sharing Schemes , 1990, EUROCRYPT.

[32]  B. V. Raghavendra Rao,et al.  On the Complexity of Matroid Isomorphism Problem , 2010, Theory of Computing Systems.

[33]  James L. Massey,et al.  Minimal Codewords and Secret Sharing , 1999 .

[34]  James G. Oxley,et al.  Matroid theory , 1992 .

[35]  G. R. BLAKLEY Safeguarding cryptographic keys , 1979, 1979 International Workshop on Managing Requirements Knowledge (MARK).

[36]  Carles Padró,et al.  Ideal Multipartite Secret Sharing Schemes , 2007, Journal of Cryptology.

[37]  Germán Sáez,et al.  New Results on Multipartite Access Structures , 2006, IACR Cryptol. ePrint Arch..

[38]  László Csirmaz,et al.  The Size of a Share Must Be Large , 1994, Journal of Cryptology.

[39]  Carles Padró,et al.  Ideal Hierarchical Secret Sharing Schemes , 2010, IEEE Transactions on Information Theory.

[40]  D. Shinar BEN-GURION UNIVERSITY OF THE NEGEV , 2012 .

[41]  Alexander Schrijver,et al.  Combinatorial optimization. Polyhedra and efficiency. , 2003 .

[42]  Tamir Tassa Hierarchical Threshold Secret Sharing , 2004, TCC.