Resource Allocation Strategies for Guided Parameter Space Searches

Computational Grids lend themselves well to parameter sweep applications, in which independent tasks calculate results for points in a parameter space. However, it is possible for a parameter space to become so large as to pose prohibitive system requirements. In these cases, user-guided searchespromise to reduce overall computation time. In this paper, we address an interesting challenge posed by these user-directed searches: how should computing resources be allocated to application tasks as the overall computation is being guided by the user? We present a model for user-guided searches, and then propose a number of resource allocation strategies and evaluate them in simulation. We find that prioritizing the assignments of tasks to computing resources throughout the search can lead to substantial performance improvements.

[1]  H.-M. Voigt,et al.  Local evolutionary search enhancement by random memorizing , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[2]  Nicholas J. Higham,et al.  The Accuracy of Floating Point Summation , 1993, SIAM J. Sci. Comput..

[3]  Carl A. Waldspurger,et al.  Lottery and stride scheduling: flexible proportional-share resource management , 1995 .

[4]  Aimo A. Törn,et al.  Global Optimization , 1999, Science.

[5]  SPIN-POLARIZED TUNNELING IN FERROMAGNET/UNCONVENTIONAL SUPERCONDUCTOR JUNCTIONS , 1998, cond-mat/9808285.

[6]  W. Hart Adaptive global optimization with local search , 1994 .

[7]  Miron Livny,et al.  Harnessing the Capacity of Computational Grids for High Energy Physics , 2000 .

[8]  Uwe Schwiegelshohn,et al.  Theory and Practice in Parallel Job Scheduling , 1997, JSSPP.

[9]  H. Casanova The virtual instrument : Support for grid-enabled scientific simulations , 2004 .

[10]  Torben Hagerup Allocating Independent Tasks to Parallel Processors: An Experimental Study , 1996, IRREGULAR.

[11]  Joel H. Saltz,et al.  DataCutter: Middleware for Filtering Very Large Scientific Datasets on Archival Storage Systems , 2000, IEEE Symposium on Mass Storage Systems.

[12]  Karsten Schwan,et al.  Progress: A Toolkit for Interactive Program Steering , 1995, ICPP.

[13]  Francine Berman,et al.  Resource allocation for guided parameter search applications on high-performance parallel computing environments , 2003 .

[14]  Andries P. Engelbrecht,et al.  Effects of swarm size on Cooperative Particle Swarm Optimisers , 2001 .

[15]  Rich Caruana,et al.  Removing the Genetics from the Standard Genetic Algorithm , 1995, ICML.

[16]  R. Salomon Re-evaluating genetic algorithm performance under coordinate rotation of benchmark functions. A survey of some theoretical and practical aspects of genetic algorithms. , 1996, Bio Systems.

[17]  T. Bartol,et al.  Monte Carlo Methods for Simulating Realistic Synaptic Microphysiology Using MCell , 2000 .

[18]  Francine Berman,et al.  Heuristics for scheduling parameter sweep applications in grid environments , 2000, Proceedings 9th Heterogeneous Computing Workshop (HCW 2000) (Cat. No.PR00556).

[19]  Dror G. Feitelson,et al.  Improved Utilization and Responsiveness with Gang Scheduling , 1997, JSSPP.

[20]  Francine Berman,et al.  The AppLeS Parameter Sweep Template: User-Level Middleware for the Grid , 2000, ACM/IEEE SC 2000 Conference (SC'00).

[21]  Thomas Bäck,et al.  Evolutionary algorithms in theory and practice - evolution strategies, evolutionary programming, genetic algorithms , 1996 .

[22]  A. Griewank Generalized descent for global optimization , 1981 .

[23]  Mitchell A. Potter,et al.  The design and analysis of a computational model of cooperative coevolution , 1997 .

[24]  David Abramson,et al.  Nimrod: a tool for performing parametrised simulations using distributed workstations , 1995, Proceedings of the Fourth IEEE International Symposium on High Performance Distributed Computing.

[25]  Francine Berman,et al.  The Virtual Instrument: Support for Grid-Enabled Mcell Simulations , 2004, Int. J. High Perform. Comput. Appl..

[26]  Rupak Biswas,et al.  An Advanced User Interface Approach for Complex Parameter Study Process Specification on the Information Power Grid , 2000, GRID.

[27]  C.R. Johnson,et al.  SCIRun: A Scientific Programming Environment for Computational Steering , 1995, Proceedings of the IEEE/ACM SC95 Conference.

[28]  D. Fogel Evolutionary algorithms in theory and practice , 1997, Complex..

[29]  Stuart E. Rogers,et al.  Steady and unsteady solutions of the incompressible Navier-Stokes equations , 1991 .

[30]  William E. Weihl,et al.  Lottery scheduling: flexible proportional-share resource management , 1994, OSDI '94.

[31]  William E. Hart,et al.  Optimization with genetic algorithm hybrids that use local searches , 1996 .

[32]  Jürgen Schmidhuber,et al.  Active Learning with Adaptive Grids , 2001, ICANN.

[33]  Dr. Zbigniew Michalewicz,et al.  How to Solve It: Modern Heuristics , 2004 .

[34]  R. Belew,et al.  Evolutionary algorithms with local search for combinatorial optimization , 1998 .

[35]  James Arthur Kohl,et al.  Cumulvs: Providing Fault Toler. Ance, Visualization, and Steer Ing of Parallel Applications , 1996, Int. J. High Perform. Comput. Appl..

[36]  S. Baluja An Empirical Comparison of Seven Iterative and Evolutionary Function Optimization Heuristics , 1995 .

[37]  Francine Berman,et al.  Resource Allocation for Steerable Parallel Parameter Searches , 2002, GRID.

[38]  Umesh V. Vazirani,et al.  "Go with the winners" algorithms , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[39]  L. Darrell Whitley,et al.  Transforming the search space with Gray coding , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[40]  Emile H. L. Aarts,et al.  Simulated Annealing: Theory and Applications , 1987, Mathematics and Its Applications.

[41]  Nancy Wilkins-Diehr,et al.  Studying protein folding on the grid: experiences using CHARMM on NPACI resources under Legion , 2001, Proceedings 10th IEEE International Symposium on High Performance Distributed Computing.

[42]  H. H. Rosenbrock,et al.  An Automatic Method for Finding the Greatest or Least Value of a Function , 1960, Comput. J..

[43]  L. Darrell Whitley,et al.  Initial performance comparisons for the delta coding algorithm , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[44]  Erik De Schutter,et al.  Computational neuroscience : realistic modeling for experimentalists , 2000 .

[45]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[46]  Ludmila I. Kuncheva,et al.  Switching between selection and fusion in combining classifiers: an experiment , 2002, IEEE Trans. Syst. Man Cybern. Part B.

[47]  Amitava Majumdar Parallel performance study of Monte Carlo photon transport code on shared-, distributed-, and distributed-shared-memory architectures , 2000, Proceedings 14th International Parallel and Distributed Processing Symposium. IPDPS 2000.

[48]  J. Doye,et al.  Tetrahedral global minimum for the 98-atom Lennard-Jones cluster. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[49]  James R. Wilson,et al.  Empirical Investigation of the Benefits of Partial Lamarckianism , 1997, Evolutionary Computation.

[50]  Francine Berman,et al.  Distributing MCell Simulations on the Grid , 2001, Int. J. High Perform. Comput. Appl..

[51]  Konstantinos G. Margaritis,et al.  An Experimental Study of Benchmarking Functions for Genetic Algorithms , 2002, Int. J. Comput. Math..

[52]  Sean R. Eddy,et al.  Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids , 1998 .

[53]  Henri Casanova,et al.  Simgrid: a toolkit for the simulation of application scheduling , 2001, Proceedings First IEEE/ACM International Symposium on Cluster Computing and the Grid.