Computational Discrete Mathematics

One recent direction in coding theory has been to study linear codes over the alphabet Z4 and apply the Gray map from Z4 to binary pairs to obtain binary nonlinear codes better than comparable binary linear codes. This connection between linear codes over Z4 and nonlinear binary codes was also the breakthrough in solving an old puzzle of the apparent duality between the nonlinear Kerdock and Preparata codes. We present a description of this puzzle and a brief introduction to codes over Z4.

[1]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[2]  Randal E. Bryant,et al.  Graph-Based Algorithms for Boolean Function Manipulation , 1986, IEEE Transactions on Computers.

[3]  Albert R. Wang,et al.  Logic verification using binary decision diagrams in a logic synthesis environment , 1988, [1988] IEEE International Conference on Computer-Aided Design (ICCAD-89) Digest of Technical Papers.

[4]  Olivier Coudert,et al.  A unified framework for the formal verification of sequential circuits , 1990, 1990 IEEE International Conference on Computer-Aided Design. Digest of Technical Papers.

[5]  Shared binary decision diagram with attributed edges for efficient Boolean function manipulation , 1990, 27th ACM/IEEE Design Automation Conference.

[6]  Kenneth J. Supowit,et al.  Finding the Optimal Variable Ordering for Binary Decision Diagrams , 1990, IEEE Trans. Computers.

[7]  Randal E. Bryant,et al.  On the Complexity of VLSI Implementations and Graph Representations of Boolean Functions with Application to Integer Multiplication , 1991, IEEE Trans. Computers.

[8]  Wolfgang Rosenstiel,et al.  Multilevel logic synthesis based on functional decision diagrams , 1992, [1992] Proceedings The European Conference on Design Automation.

[9]  Randal E. Bryant,et al.  Symbolic Boolean manipulation with ordered binary-decision diagrams , 1992, CSUR.

[10]  Jacob A. Abraham,et al.  Probabilistic verification of Boolean functions , 1992, Formal Methods Syst. Des..

[11]  Shuzo Yajima,et al.  The Complexity of the Optimal Variable Ordering Problems of Shared Binary Decision Diagrams , 1993, ISAAC.

[12]  Kenneth L. McMillan,et al.  Symbolic model checking , 1992 .

[13]  Christoph Meinel,et al.  Frontiers of Feasible and Probabilistic Feasible Boolean Manipulation with Branching Programs , 1993, STACS.

[14]  R. Rudell Dynamic variable ordering for ordered binary decision diagrams , 1993, Proceedings of 1993 International Conference on Computer Aided Design (ICCAD).

[15]  Ilan Beer,et al.  Efficient Model Checking by Automated Ordering of Transition Relation Partitions , 1994, CAV.

[16]  Rolf Drechsler,et al.  Efficient Representation and Manipulation of Switching Functions Based on Ordered Kronecker Functional Decision Diagrams , 1994, 31st Design Automation Conference.

[17]  Olivier Coudert,et al.  The implicit set paradigm: A new approach to finite state system verification , 1995, Formal Methods Syst. Des..

[18]  Jochen Bern,et al.  Efficient OBDD-Based Boolean Manipulation in CAD Beyond Current Limits , 1995, 32nd Design Automation Conference.

[19]  Beate Bollig,et al.  Improving the Variable Ordering of OBDDs Is NP-Complete , 1996, IEEE Trans. Computers.

[20]  Christoph Meinel,et al.  Mod-2-OBDDs—A data structure that generalizes EXOR-sum-of-products and ordered binary decision diagrams , 1996, Formal Methods Syst. Des..

[21]  F. Somenzi,et al.  Linear Sifting Of Decision Diagrams , 1997, Proceedings of the 34th Design Automation Conference.

[22]  Detlef Sieling On the Existence of Polynomial Time Approximation Schemes for OBDD Minimization (Extended Abstract) , 1998, STACS.

[23]  Christoph Meinel,et al.  Sample Method for Minimization of OBDDs , 1998, SOFSEM.

[24]  Christoph Meinel,et al.  Xor-OBDDs - a BDD Structure for Probabilistic Verification , 1998, Universität Trier, Mathematik/Informatik, Forschungsbericht.

[25]  M. Fujita,et al.  Sampling schemes for computing OBDD variable orderings , 1998, 1998 IEEE/ACM International Conference on Computer-Aided Design. Digest of Technical Papers (IEEE Cat. No.98CB36287).

[26]  Hiroyuki Higuchi,et al.  Lazy group sifting for efficient symbolic state traversal of FSMs , 1999, 1999 IEEE/ACM International Conference on Computer-Aided Design. Digest of Technical Papers (Cat. No.99CH37051).

[27]  Christoph Meinel,et al.  Algorithmic Considerations for +-OBDD Reordering , 1999, Universität Trier, Mathematik/Informatik, Forschungsbericht.

[28]  Christoph Meinel,et al.  Speeding up symbolic model checking by accelerating dynamic variable reordering , 2000, Universität Trier, Mathematik/Informatik, Forschungsbericht.

[29]  Elena Dubrova,et al.  Probabilistic verification of multiple-valued functions , 2000, Proceedings 30th IEEE International Symposium on Multiple-Valued Logic (ISMVL 2000).

[30]  Christoph Meinel,et al.  Mod-p decision diagrams: a data structure for multiple-valued functions , 2000, Proceedings 30th IEEE International Symposium on Multiple-Valued Logic (ISMVL 2000).

[31]  C. Lee Giles,et al.  Accessibility of information on the Web , 2000, INTL.

[32]  Christoph Meinel,et al.  Local Encoding Transformations for Optimizing OBDD-Representations of Finite State Machines , 2001, Formal Methods Syst. Des..

[33]  F. Somenzi,et al.  Using lower bounds during dynamic BDD minimization , 2001 .