Interval observers for discrete-time systems

First, time-invariant interval observers are proposed for a family of nonlinear systems. Second, it is shown that, for any time-invariant exponentially stable discrete-time linear system with additive disturbances, time-varying exponentially stable discrete-time interval observers can be constructed. The result relies on the design of time-varying changes of coordinates which transform a linear system into a nonnegative linear system.

[1]  Christophe Combastel,et al.  A Stable Interval Observer for LTI Systems with No Multiple Poles , 2011 .

[2]  Olivier Bernard,et al.  Construction of ISS interval observers for triangular systems , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[3]  Iasson Karafyllis,et al.  On the Observer Problem for Discrete-Time Control Systems , 2007, IEEE Transactions on Automatic Control.

[4]  J Harmand,et al.  Software sensors for highly uncertain WWTPs: a new approach based on interval observers. , 2002, Water research.

[5]  Olivier Bernard,et al.  Exponentially Stable Interval Observers for Linear Systems with Delay , 2012, SIAM J. Control. Optim..

[6]  Y. Candau,et al.  Bounded error moving horizon state estimator for non-linear continuous-time systems: application to a bioprocess system , 2005 .

[7]  J. Gouzé,et al.  Interval observers for uncertain biological systems , 2000 .

[8]  Wilfrid Perruquetti,et al.  On interval observer design for time-invariant discrete-time systems , 2013, 2013 European Control Conference (ECC).

[9]  Eric Walter,et al.  Interval observers for continuous-time linear systems with discrete-time outputs , 2012, 2012 American Control Conference (ACC).

[10]  Jean-Luc Gouzé,et al.  Near optimal interval observers bundle for uncertain bioreactors , 2007 .

[11]  Karl Johan Åström,et al.  Computer-Controlled Systems: Theory and Design , 1984 .

[12]  M. Boutayeb,et al.  A reduced-order observer for non-linear discrete-time systems , 2000 .

[13]  Olivier Bernard,et al.  Robust interval observers for global Lipschitz uncertain chaotic systems , 2010, Syst. Control. Lett..

[14]  Olivier Bernard,et al.  Interval observers for linear time-invariant systems with disturbances , 2011, Autom..

[15]  Olivier Bernard,et al.  Asymptotically Stable Interval Observers for Planar Systems With Complex Poles , 2010, IEEE Transactions on Automatic Control.

[16]  W. Haddad,et al.  Nonnegative and Compartmental Dynamical Systems , 2010 .

[17]  Costas Kravaris,et al.  Nonlinear discrete-time observer design with linearizable error dynamics , 2003, IEEE Trans. Autom. Control..

[18]  L. Perko Differential Equations and Dynamical Systems , 1991 .

[19]  Denis V. Efimov,et al.  Interval State Estimation for a Class of Nonlinear Systems , 2012, IEEE Transactions on Automatic Control.

[20]  Jean-Luc Gouzé,et al.  Closed loop observers bundle for uncertain biotechnological models , 2004 .

[21]  V. Alcaraz-González,et al.  Robust Nonlinear Observers for Bioprocesses: Application to Wastewater Treatment , 2007 .

[22]  Iasson Karafyllis,et al.  Stability and Stabilization of Nonlinear Systems , 2011 .

[23]  Astrom Computer Controlled Systems , 1990 .

[24]  A. Vande Wouwer,et al.  Improving continuous–discrete interval observers with application to microalgae-based bioprocesses , 2009 .