Oversampling, quasi-affine frames, and wave packets

Abstract In [E. Hernandez, D. Labate, G. Weiss, J. Geom. Anal. 12 (4) (2002) 615–662], three of the authors obtained a characterization of certain types of reproducing systems. In this work, we apply these results and methods to various affine-like, wave packets and Gabor systems to determine their frame properties. In particular, we study how oversampled systems inherit properties (like the frame bounds) of the original systems. Moreover, our approach allows us to study the phenomenon of oversampling in much greater generality than is found in the literature.

[1]  C. Chui,et al.  Characterization of General Tight Wavelet Frames with Matrix Dilations and Tightness Preserving Oversampling , 2002 .

[2]  B. Torrésani,et al.  N-dimensional affine Weyl-Heisenberg wavelets , 1993 .

[3]  Demetrio Labate,et al.  A unified characterization of reproducing systems generated by a finite family , 2002 .

[4]  Christoph Thiele,et al.  $L^p$ estimates on the bilinear Hilbert transform for $2 < p < \infty$ , 1997 .

[5]  Marcin Bownik On characterizations of multiwavelets in ²(ℝⁿ) , 2001 .

[6]  Brody Dylan Johnson,et al.  On the Oversampling of Affine Wavelet Frames , 2003, SIAM J. Math. Anal..

[7]  Charles K. Chui,et al.  Affine frames, quasi-affine frames, and their duals , 1998, Adv. Comput. Math..

[8]  Zuowei Shen Affine systems in L 2 ( IR d ) : the analysis of the analysis operator , 1995 .

[9]  R. Lipsman Abstract harmonic analysis , 1968 .

[10]  G. Folland Harmonic analysis in phase space , 1989 .

[11]  8 - Affine, Quasi-Affine and Co-Affine Wavelets , 2003 .

[12]  Charles K. Chui,et al.  oversampling preserves any tight affine frame for odd , 1994 .

[13]  D. Speegle On the existence of wavelets for non-expansive dilation matrices , 2003 .

[14]  G. Weiss,et al.  A First Course on Wavelets , 1996 .

[15]  Richard S. Laugesen,et al.  Translational averaging for completeness, characterization and oversampling of wavelets , 2002 .

[16]  Demetrio Labate,et al.  A unified characterization of reproducing systems generated by a finite family, II , 2002 .

[17]  Charles Fefferman,et al.  Wave packets and fourier integral operators , 1978 .

[18]  H. O. Foulkes Abstract Algebra , 1967, Nature.

[19]  D. Larson,et al.  ON CHARACTERIZATIONS OF MULTIWAVELETS IN L(R) , 2001 .

[20]  A. Ron,et al.  Affine Systems inL2(Rd): The Analysis of the Analysis Operator , 1997 .

[21]  A. Ron,et al.  Frames and Stable Bases for Shift-Invariant Subspaces of L2(ℝd) , 1995, Canadian Journal of Mathematics.

[22]  Joseph D. Lakey,et al.  Extensions of the Heisenberg Group by Dilations and Frames , 1995 .