A modified differential-model for interaction parameters in PR EoS with vdW mixing rules for mixtures containing HFCs and HCs
暂无分享,去创建一个
Peng Hu | Zeshao Chen | L. Chen | P. Hu | Zeshao Chen | Long-Xiang Chen
[1] Youngil Kim,et al. Vapor–liquid equilibria for pentafluoroethane + propane and difluoromethane + propane systems over a temperature range from 253.15 to 323.15 K , 2003 .
[2] G. Morrison,et al. Interaction coefficients for 15 mixtures of flammable and non-flammable components , 1995 .
[3] Y. Duan,et al. Isothermal vapor-liquid equilibria for the pentafluoroethane + propane and pentafluoroethane + 1,1,1,2,3,3,3-heptafluoropropane systems , 2010 .
[4] Y. Higashi. Vapor−Liquid Equilibrium, Coexistence Curve, and Critical Locus for Pentafluoroethane + 1,1,1-Trifluoroethane (R125/R143a) , 1999 .
[5] F. Mutelet,et al. Addition of the Nitrogen Group to the PPR78 Model (Predictive 1978, Peng Robinson EOS with Temperature-Dependent kij Calculated through a Group Contribution Method) , 2008 .
[6] C.-N. Kim,et al. Vapor–Liquid Equilibrium of HFC-32/134a And HFC-125/134a Systems , 1999 .
[7] Hwayong Kim,et al. Vapor-Liquid Equilibria of the Binary n-Butane (HC-600) + Difluoromethane (HFC-32), + Pentafluoroethane (HFC-125), + 1,1,1,2-Tetrafluoroethane (HFC-134a) Systems , 2005 .
[8] F. Mutelet,et al. Use of the PPR78 Model To Predict New Equilibrium Data of Binary Systems Involving Hydrocarbons and Nitrogen. Comparison with Other GCEOS , 2008 .
[9] Min Young Jung,et al. Vapor−Liquid Equilibria for the Difluoromethane (HFC-32) + Pentafluoroethane (HFC-125) System , 2001 .
[10] Hwayong Kim,et al. Vapor–liquid equilibria of the 1,1,1-trifluoroethane (HFC-143a) + propane (HC-290) system , 2006 .
[11] B. Lee,et al. Vapor–Liquid Equilibrium Measurements for Binary Mixtures Containing 1,1,1,2,3,3,3-Heptafluoropropane (HFC-227ea)1 , 2000 .
[12] L. Fedele,et al. Isothermal VLE measurements for the binary mixtures HFC-134a + HFC-245fa and HC-600a + HFC-245fa , 2001 .
[13] Yukihiro Higashi,et al. Vapor−Liquid Equilibrium (VLE) Properties for the Binary Systems Propane (1) + n-Butane (2) and Propane (1) + Isobutane (3) , 2005 .
[14] D. Tassios,et al. Methanehydrocarbon interaction parameters correlation for the Peng-Robinson and the t-mPR equation of state , 1995 .
[15] P. Hu,et al. Prediction of vapor-liquid equilibria properties of several HFC binary refrigerant mixtures , 2003 .
[17] Jean-Noël Jaubert,et al. VLE predictions with the Peng–Robinson equation of state and temperature dependent kij calculated through a group contribution method , 2004 .
[18] H. Nishiumi,et al. Vapor–liquid equilibria for the pure, binary and ternary systems containing HFC32, HFC125 and HFC134a , 1998 .
[19] M. Gong,et al. Experimental measurement of vapor pressures and (vapor + liquid) equilibrium for {1,1,1,2-tetrafluoroethane (R134a) + propane (R290)} by a recirculation apparatus with view windows , 2011 .
[20] F. Mutelet,et al. Addition of the Hydrogen Sulfide Group to the PPR78 Model (Predictive 1978, Peng–Robinson Equation of State with Temperature Dependent kij Calculated through a Group Contribution Method) , 2008 .
[21] Jong Sung Lim,et al. Phase Equilibria of CFC Alternative Refrigerant Mixtures: Binary Systems of Isobutane + 1,1,1,2-Tetrafluoroethane, + 1,1-Difluoroethane, and + Difluoromethane , 1999 .
[22] Chang Nyeon Kim,et al. Vapor−Liquid Equilibria for the Difluoromethane (HFC-32) + 1,1,1,2-Tetrafluoroethane (HFC-134a) System , 1997 .
[23] F. Montel,et al. A simple correlation to evaluate binary interaction parameters of the Peng-Robinson equation of state: binary light hydrocarbon systems , 1992 .
[24] R. Stryjek,et al. ( Vapour + liquid ) equilibrium measurement and correlation of the refrigerant ( propane + 1,1,1,3,3,3-hexafluoropropane) atT = ( 283.13, 303.19, and 323.26) K , 2000 .
[25] L. Fedele,et al. Vapor-Liquid Equilibrium for the Difluoromethane (R32) + n-Butane (R600) System , 2005 .
[26] R. Stryjek,et al. Vapor-liquid equilibria for difluoromethane (R32) + and pentafluoroethane (R125) + 1,1,1,3,3,3-hexafluoropropane (R236fa) at 303.2 and 323.3 K , 1999 .
[27] Jean-Noël Jaubert,et al. Relationship between the binary interaction parameters (kij) of the Peng–Robinson and those of the Soave–Redlich–Kwong equations of state: Application to the definition of the PR2SRK model , 2010 .
[28] R. Reid,et al. The Properties of Gases and Liquids , 1977 .
[29] K. Yoo,et al. Vapor−Liquid Equilibria for Propane (R290) + n-Butane (R600) at Various Temperatures , 2008 .
[30] L. Fedele,et al. Vapor+Liquid Equilibrium Measurements and Correlation of the Binary Refrigerant Mixtures Difluoromethane (HFC-32)+1,1,1,2,3,3-Hexafluoropropane (HFC-236ea) and Pentafluoroethane (HFC-125)+1,1,1,2,3,3-Hexafluoropropane (HFC-236ea) at 288.6, 303.2, and 318.2 K , 2000 .
[31] B. Lee,et al. Phase equilibria of hfc mixtures : Binary mixtures of trifluoromethane + 1,1-difluoroethane and trifluoromethane + 1,1,1-trifluoroethane at 283.15 and 293.15 K , 2002 .
[32] H. Anton. Elementary Linear Algebra , 1970 .
[33] Jean-Noël Jaubert,et al. Predicting the Phase Equilibria of Synthetic Petroleum Fluids with the PPR78 Approach , 2010 .
[34] Ki Hyun Park,et al. Phase Equilibria of CFC Alternative Refrigerant Mixtures. Binary Systems of Trifluoromethane (HFC-23) + 1,1,1,2-Tetrafluoroethane (HFC-134a) and Trifluoromethane (HFC-23) + 1,1,1,2,3,3,3-Heptafluoropropane (HFC-227ea) at 283.15 and 293.15 K , 2001 .
[35] Yuan-Yuan Duan,et al. Vapor−Liquid Equilibria Predictions for New Refrigerant Mixtures Based on Group Contribution Theory , 2007 .
[36] F. Mutelet,et al. Predicting the phase equilibria of CO2+hydrocarbon systems with the PPR78 model (PR EOS and kij calculated through a group contribution method) , 2008 .
[37] M. Gong,et al. Isothermal (vapour + liquid) equilibrium for the binary {1,1,2,2-tetrafluoroethane (R134) + propane (R290)} and {1,1,2,2-tetrafluoroethane (R134) + isobutane (R600a)} systems , 2010 .
[38] M. Barolo,et al. A method for the prediction of vapour-liquid equilibria of refrigerant mixtures at low and moderate pressure , 1995 .
[39] N. Elvassore,et al. A recirculation apparatus for vapor–liquid equilibrium measurements of refrigerants. Binary mixtures of R600a, R134a and R236fa , 1998 .
[40] Jae-Duck Kim,et al. Phase equilibria of chlorofluorocarbon alternative refrigerant mixtures. Binary systems of trifluoromethane + isobutane at 283.15 and 293.15 K and 1,1,1-trifluoroethane + isobutane at 323.15 and 333.15 K , 2000 .
[41] B. Lee,et al. Vapor–Liquid Equilibria of CFC Alternative Refrigerant Mixtures: Trifluoromethane (HFC-23)+Difluoromethane (HFC-32), Trifluoromethane (HFC-23)+Pentafluoroethane (HFC-125), and Pentafluoroethane (HFC-125)+1,1-Difluoroethane (HFC-152a) , 2000 .
[42] S. Shimawaki,et al. Vapor-Liquid Equilibria of HFC-32/n-Butane Mixtures , 2003 .
[43] (Vapour + liquid) equilibria of the {trifluoromethane (HFC-23) + propane} and {trifluoromethane (HFC-23) + n-butane} systems , 2009 .
[44] Byung-chul Lee,et al. Vapor-Liquid Equilibria for 1,1,1,2,3,3,3-Heptafluoropropane (HFC-227ea) + Butane (R600) at Various Temperatures , 2008 .
[45] L. Fedele,et al. Isothermal vapor–liquid equilibrium for the three binary systems 1,1,1,2,3,3-hexafluoropropane with dimethyl ether or propane, and 1,1,1,3,3,3-hexafluoropropane with dimethyl ether , 2000 .
[46] D. Tassios,et al. A generalized correlation for the interaction coefficients of CO2—hydrocarbon binary mixtures , 1994 .
[47] Jean-Noël Jaubert,et al. Extension of the PPR78 model (Predictive 1978, Peng-Robinson EOS with temperature dependent kij calculated through a group contribution method) to systems containing naphtenic compounds , 2005 .
[48] Jungwon Choi,et al. Vapor−Liquid Equilibria for the 1,1-Difluoroethane (HFC-152a) + Propane (R-290) System , 2007 .
[49] F. Mutelet,et al. Addition of the sulfhydryl group (–SH) to the PPR78 model (predictive 1978, Peng–Robinson EOS with temperature dependent kij calculated through a group contribution method) , 2008 .
[50] K. Yoo,et al. Measurement of VLE data for propane+1,1-difluoroethane at various temperatures from 268.15 to 333.15 K , 2009 .
[51] Hun-Soo Byun,et al. Vapor–liquid equilibria for the binary system of 1,1-difluoroethane (HFC-152a) + n-butane (R-600) at various temperatures , 2007 .
[52] Isothermal vapor-liquid equilibria for 1,1,1,2-tetrafluoroethane + propane and propane + 1,1,1,-trifluoroethane at 283.18 K , 1998 .
[53] Guangming Chen,et al. Vapor-Liquid Equilibria for the Trifluoromethane + 1,1,1,2-Tetrafluoroethane System , 2006 .
[54] Yuan-Yuan Duan,et al. Vapor−Liquid Equilibria Predictions for Alternative Working Fluids at Low and Moderate Pressures , 2008 .
[55] Jong Sung Lim,et al. Phase Equilibria of Chlorofluorocarbon Alternative Refrigerant Mixtures , 1999 .
[56] Y. Higashi. Vapor-liquid equilibrium, coexistence curve, and critical locus for difluoromethane + pentafluoroethane (R-32 + R-125) , 1997 .
[57] D. Peng,et al. A New Two-Constant Equation of State , 1976 .
[58] Guangming Chen,et al. Isothermal vapor-liquid equilibrium data for the binary mixture difluoromethane (HFC-32) + ethyl fluoride (HFC-161) over a temperature range from 253.15 K to 303.15 K , 2010 .
[59] B. Lee,et al. Phase Equilibria of CFC Alternative Refrigerant Mixtures: 1,1,1,2,3,3,3-Heptafluoropropane (HFC-227ea)+Difluoromethane (HFC-32), +1,1,1,2-Tetrafluoroethane (HFC-134a), and +1,1-Difluoroethane (HFC-152a) , 2001 .
[60] B. Lee,et al. Measurement of Vapor−Liquid Equilibria for the Binary Mixture of Propane (R-290) + Isobutane (R-600a) , 2004 .
[61] M. Gong,et al. Prediction of homogeneous azeotropes by Wilson equation for binary HFCs and HCs refrigerant mixtures , 2008 .
[62] Hwayong Kim,et al. Vapor-liquid equilibria of the 1,1,1-trifluoroethane + n-butane system , 2007 .
[63] Peng Hu,et al. Study on the Interaction Coefficients in PR Equation with vdW Mixing Rules for HFC and HC Binary Mixtures , 2008 .
[64] M. Gong,et al. Vapor−Liquid Equilibria of the Fluoroethane (R161) + 1,1,1,2-Tetrafluoroethane (R134a) System at Various Temperatures from (253.15 to 292.92) K , 2008 .
[65] Guangming Chen,et al. Isothermal vapor―liquid equilibrium data for the binary mixture ethyl fluoride (HFC-161) + 1,1,1,2,3,3,3-heptafluoroproane (HFC-227ea) over a temperature range from 253.15 K to 313.15 K , 2010 .