A modified differential-model for interaction parameters in PR EoS with vdW mixing rules for mixtures containing HFCs and HCs

Abstract In a previous work, a predictive model for the interaction parameter k ij was proposed as k ij  =  k i  −  k j . The assumed mixing factor k i for the pure components can be obtained by fitting to the correlated k ij of mixtures which have available experimental data. In this work, up to 62 binary mixtures containing HFCs and HCs were involved and their reported experimental VLE data were correlated using the PR equation of state with the vdW mixing rules. According to the correlation results, a modified differential-model was proposed for the prediction of the interaction parameter k ij with the introduction of the acentric factors and the critical properties of the components. The values of mixing factors k i in the modified model were obtained by the least square fitting of the correlated 62 k ij data for 15 HFCs and HCs, namely HFC23, HFC32, HFC125, HFC143a, HFC134a, HFC134, HFC152a, HFC161, HFC227ea, HFC236fa, HFC236ea, HFC245fa, propane, isobutane, and n-butane. 105 predicted k ij for mixtures containing these HFCs and HCs were given. The predicted results by using the modified model show a good agreement compared to the correlation results. The overall average absolute deviations of pressures and vapor phase compositions of the predicted results are 1.77% and 0.0086, respectively.

[1]  Youngil Kim,et al.  Vapor–liquid equilibria for pentafluoroethane + propane and difluoromethane + propane systems over a temperature range from 253.15 to 323.15 K , 2003 .

[2]  G. Morrison,et al.  Interaction coefficients for 15 mixtures of flammable and non-flammable components , 1995 .

[3]  Y. Duan,et al.  Isothermal vapor-liquid equilibria for the pentafluoroethane + propane and pentafluoroethane + 1,1,1,2,3,3,3-heptafluoropropane systems , 2010 .

[4]  Y. Higashi Vapor−Liquid Equilibrium, Coexistence Curve, and Critical Locus for Pentafluoroethane + 1,1,1-Trifluoroethane (R125/R143a) , 1999 .

[5]  F. Mutelet,et al.  Addition of the Nitrogen Group to the PPR78 Model (Predictive 1978, Peng Robinson EOS with Temperature-Dependent kij Calculated through a Group Contribution Method) , 2008 .

[6]  C.-N. Kim,et al.  Vapor–Liquid Equilibrium of HFC-32/134a And HFC-125/134a Systems , 1999 .

[7]  Hwayong Kim,et al.  Vapor-Liquid Equilibria of the Binary n-Butane (HC-600) + Difluoromethane (HFC-32), + Pentafluoroethane (HFC-125), + 1,1,1,2-Tetrafluoroethane (HFC-134a) Systems , 2005 .

[8]  F. Mutelet,et al.  Use of the PPR78 Model To Predict New Equilibrium Data of Binary Systems Involving Hydrocarbons and Nitrogen. Comparison with Other GCEOS , 2008 .

[9]  Min Young Jung,et al.  Vapor−Liquid Equilibria for the Difluoromethane (HFC-32) + Pentafluoroethane (HFC-125) System , 2001 .

[10]  Hwayong Kim,et al.  Vapor–liquid equilibria of the 1,1,1-trifluoroethane (HFC-143a) + propane (HC-290) system , 2006 .

[11]  B. Lee,et al.  Vapor–Liquid Equilibrium Measurements for Binary Mixtures Containing 1,1,1,2,3,3,3-Heptafluoropropane (HFC-227ea)1 , 2000 .

[12]  L. Fedele,et al.  Isothermal VLE measurements for the binary mixtures HFC-134a + HFC-245fa and HC-600a + HFC-245fa , 2001 .

[13]  Yukihiro Higashi,et al.  Vapor−Liquid Equilibrium (VLE) Properties for the Binary Systems Propane (1) + n-Butane (2) and Propane (1) + Isobutane (3) , 2005 .

[14]  D. Tassios,et al.  Methanehydrocarbon interaction parameters correlation for the Peng-Robinson and the t-mPR equation of state , 1995 .

[15]  P. Hu,et al.  Prediction of vapor-liquid equilibria properties of several HFC binary refrigerant mixtures , 2003 .

[16]  Isothermal Vapor−Liquid Equilibrium of (Pentafluoroethane + Fluoroethane) at Temperatures between (265.15 and 303.15) K Obtained with a Recirculating Still , 2006 .

[17]  Jean-Noël Jaubert,et al.  VLE predictions with the Peng–Robinson equation of state and temperature dependent kij calculated through a group contribution method , 2004 .

[18]  H. Nishiumi,et al.  Vapor–liquid equilibria for the pure, binary and ternary systems containing HFC32, HFC125 and HFC134a , 1998 .

[19]  M. Gong,et al.  Experimental measurement of vapor pressures and (vapor + liquid) equilibrium for {1,1,1,2-tetrafluoroethane (R134a) + propane (R290)} by a recirculation apparatus with view windows , 2011 .

[20]  F. Mutelet,et al.  Addition of the Hydrogen Sulfide Group to the PPR78 Model (Predictive 1978, Peng–Robinson Equation of State with Temperature Dependent kij Calculated through a Group Contribution Method) , 2008 .

[21]  Jong Sung Lim,et al.  Phase Equilibria of CFC Alternative Refrigerant Mixtures: Binary Systems of Isobutane + 1,1,1,2-Tetrafluoroethane, + 1,1-Difluoroethane, and + Difluoromethane , 1999 .

[22]  Chang Nyeon Kim,et al.  Vapor−Liquid Equilibria for the Difluoromethane (HFC-32) + 1,1,1,2-Tetrafluoroethane (HFC-134a) System , 1997 .

[23]  F. Montel,et al.  A simple correlation to evaluate binary interaction parameters of the Peng-Robinson equation of state: binary light hydrocarbon systems , 1992 .

[24]  R. Stryjek,et al.  ( Vapour + liquid ) equilibrium measurement and correlation of the refrigerant ( propane + 1,1,1,3,3,3-hexafluoropropane) atT = ( 283.13, 303.19, and 323.26) K , 2000 .

[25]  L. Fedele,et al.  Vapor-Liquid Equilibrium for the Difluoromethane (R32) + n-Butane (R600) System , 2005 .

[26]  R. Stryjek,et al.  Vapor-liquid equilibria for difluoromethane (R32) + and pentafluoroethane (R125) + 1,1,1,3,3,3-hexafluoropropane (R236fa) at 303.2 and 323.3 K , 1999 .

[27]  Jean-Noël Jaubert,et al.  Relationship between the binary interaction parameters (kij) of the Peng–Robinson and those of the Soave–Redlich–Kwong equations of state: Application to the definition of the PR2SRK model , 2010 .

[28]  R. Reid,et al.  The Properties of Gases and Liquids , 1977 .

[29]  K. Yoo,et al.  Vapor−Liquid Equilibria for Propane (R290) + n-Butane (R600) at Various Temperatures , 2008 .

[30]  L. Fedele,et al.  Vapor+Liquid Equilibrium Measurements and Correlation of the Binary Refrigerant Mixtures Difluoromethane (HFC-32)+1,1,1,2,3,3-Hexafluoropropane (HFC-236ea) and Pentafluoroethane (HFC-125)+1,1,1,2,3,3-Hexafluoropropane (HFC-236ea) at 288.6, 303.2, and 318.2 K , 2000 .

[31]  B. Lee,et al.  Phase equilibria of hfc mixtures : Binary mixtures of trifluoromethane + 1,1-difluoroethane and trifluoromethane + 1,1,1-trifluoroethane at 283.15 and 293.15 K , 2002 .

[32]  H. Anton Elementary Linear Algebra , 1970 .

[33]  Jean-Noël Jaubert,et al.  Predicting the Phase Equilibria of Synthetic Petroleum Fluids with the PPR78 Approach , 2010 .

[34]  Ki Hyun Park,et al.  Phase Equilibria of CFC Alternative Refrigerant Mixtures. Binary Systems of Trifluoromethane (HFC-23) + 1,1,1,2-Tetrafluoroethane (HFC-134a) and Trifluoromethane (HFC-23) + 1,1,1,2,3,3,3-Heptafluoropropane (HFC-227ea) at 283.15 and 293.15 K , 2001 .

[35]  Yuan-Yuan Duan,et al.  Vapor−Liquid Equilibria Predictions for New Refrigerant Mixtures Based on Group Contribution Theory , 2007 .

[36]  F. Mutelet,et al.  Predicting the phase equilibria of CO2+hydrocarbon systems with the PPR78 model (PR EOS and kij calculated through a group contribution method) , 2008 .

[37]  M. Gong,et al.  Isothermal (vapour + liquid) equilibrium for the binary {1,1,2,2-tetrafluoroethane (R134) + propane (R290)} and {1,1,2,2-tetrafluoroethane (R134) + isobutane (R600a)} systems , 2010 .

[38]  M. Barolo,et al.  A method for the prediction of vapour-liquid equilibria of refrigerant mixtures at low and moderate pressure , 1995 .

[39]  N. Elvassore,et al.  A recirculation apparatus for vapor–liquid equilibrium measurements of refrigerants. Binary mixtures of R600a, R134a and R236fa , 1998 .

[40]  Jae-Duck Kim,et al.  Phase equilibria of chlorofluorocarbon alternative refrigerant mixtures. Binary systems of trifluoromethane + isobutane at 283.15 and 293.15 K and 1,1,1-trifluoroethane + isobutane at 323.15 and 333.15 K , 2000 .

[41]  B. Lee,et al.  Vapor–Liquid Equilibria of CFC Alternative Refrigerant Mixtures: Trifluoromethane (HFC-23)+Difluoromethane (HFC-32), Trifluoromethane (HFC-23)+Pentafluoroethane (HFC-125), and Pentafluoroethane (HFC-125)+1,1-Difluoroethane (HFC-152a) , 2000 .

[42]  S. Shimawaki,et al.  Vapor-Liquid Equilibria of HFC-32/n-Butane Mixtures , 2003 .

[43]  (Vapour + liquid) equilibria of the {trifluoromethane (HFC-23) + propane} and {trifluoromethane (HFC-23) + n-butane} systems , 2009 .

[44]  Byung-chul Lee,et al.  Vapor-Liquid Equilibria for 1,1,1,2,3,3,3-Heptafluoropropane (HFC-227ea) + Butane (R600) at Various Temperatures , 2008 .

[45]  L. Fedele,et al.  Isothermal vapor–liquid equilibrium for the three binary systems 1,1,1,2,3,3-hexafluoropropane with dimethyl ether or propane, and 1,1,1,3,3,3-hexafluoropropane with dimethyl ether , 2000 .

[46]  D. Tassios,et al.  A generalized correlation for the interaction coefficients of CO2—hydrocarbon binary mixtures , 1994 .

[47]  Jean-Noël Jaubert,et al.  Extension of the PPR78 model (Predictive 1978, Peng-Robinson EOS with temperature dependent kij calculated through a group contribution method) to systems containing naphtenic compounds , 2005 .

[48]  Jungwon Choi,et al.  Vapor−Liquid Equilibria for the 1,1-Difluoroethane (HFC-152a) + Propane (R-290) System , 2007 .

[49]  F. Mutelet,et al.  Addition of the sulfhydryl group (–SH) to the PPR78 model (predictive 1978, Peng–Robinson EOS with temperature dependent kij calculated through a group contribution method) , 2008 .

[50]  K. Yoo,et al.  Measurement of VLE data for propane+1,1-difluoroethane at various temperatures from 268.15 to 333.15 K , 2009 .

[51]  Hun-Soo Byun,et al.  Vapor–liquid equilibria for the binary system of 1,1-difluoroethane (HFC-152a) + n-butane (R-600) at various temperatures , 2007 .

[52]  Isothermal vapor-liquid equilibria for 1,1,1,2-tetrafluoroethane + propane and propane + 1,1,1,-trifluoroethane at 283.18 K , 1998 .

[53]  Guangming Chen,et al.  Vapor-Liquid Equilibria for the Trifluoromethane + 1,1,1,2-Tetrafluoroethane System , 2006 .

[54]  Yuan-Yuan Duan,et al.  Vapor−Liquid Equilibria Predictions for Alternative Working Fluids at Low and Moderate Pressures , 2008 .

[55]  Jong Sung Lim,et al.  Phase Equilibria of Chlorofluorocarbon Alternative Refrigerant Mixtures , 1999 .

[56]  Y. Higashi Vapor-liquid equilibrium, coexistence curve, and critical locus for difluoromethane + pentafluoroethane (R-32 + R-125) , 1997 .

[57]  D. Peng,et al.  A New Two-Constant Equation of State , 1976 .

[58]  Guangming Chen,et al.  Isothermal vapor-liquid equilibrium data for the binary mixture difluoromethane (HFC-32) + ethyl fluoride (HFC-161) over a temperature range from 253.15 K to 303.15 K , 2010 .

[59]  B. Lee,et al.  Phase Equilibria of CFC Alternative Refrigerant Mixtures: 1,1,1,2,3,3,3-Heptafluoropropane (HFC-227ea)+Difluoromethane (HFC-32), +1,1,1,2-Tetrafluoroethane (HFC-134a), and +1,1-Difluoroethane (HFC-152a) , 2001 .

[60]  B. Lee,et al.  Measurement of Vapor−Liquid Equilibria for the Binary Mixture of Propane (R-290) + Isobutane (R-600a) , 2004 .

[61]  M. Gong,et al.  Prediction of homogeneous azeotropes by Wilson equation for binary HFCs and HCs refrigerant mixtures , 2008 .

[62]  Hwayong Kim,et al.  Vapor-liquid equilibria of the 1,1,1-trifluoroethane + n-butane system , 2007 .

[63]  Peng Hu,et al.  Study on the Interaction Coefficients in PR Equation with vdW Mixing Rules for HFC and HC Binary Mixtures , 2008 .

[64]  M. Gong,et al.  Vapor−Liquid Equilibria of the Fluoroethane (R161) + 1,1,1,2-Tetrafluoroethane (R134a) System at Various Temperatures from (253.15 to 292.92) K , 2008 .

[65]  Guangming Chen,et al.  Isothermal vapor―liquid equilibrium data for the binary mixture ethyl fluoride (HFC-161) + 1,1,1,2,3,3,3-heptafluoroproane (HFC-227ea) over a temperature range from 253.15 K to 313.15 K , 2010 .