Critical networks exhibit maximal information diversity in structure-dynamics relationships.

Network structure strongly constrains the range of dynamic behaviors available to a complex system. These system dynamics can be classified based on their response to perturbations over time into two distinct regimes, ordered or chaotic, separated by a critical phase transition. Numerous studies have shown that the most complex dynamics arise near the critical regime. Here we use an information theoretic approach to study structure-dynamics relationships within a unified framework and show that these relationships are most diverse in the critical regime.

[1]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[2]  S. Kauffman Homeostasis and Differentiation in Random Genetic Control Networks , 1969, Nature.

[3]  Michael F. Shlesinger,et al.  Dynamic patterns in complex systems , 1988 .

[4]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[5]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[6]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[7]  Jaakko Astola,et al.  The role of certain Post classes in Boolean network models of genetic networks , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[8]  Norman H. Packard,et al.  Dynamic Patterns in Complex Systems , 1988 .

[9]  A. Barabasi,et al.  Comparable system-level organization of Archaea and Eukaryotes , 2001, Nature Genetics.

[10]  L. Glass,et al.  Common Chaos in Arbitrarily Complex Feedback Networks , 1997 .

[11]  Albert-László Barabási,et al.  Error and attack tolerance of complex networks , 2000, Nature.

[12]  J. Urry Complexity , 2006, Interpreting Art.

[13]  Susumu Goto,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 2000, Nucleic Acids Res..

[14]  Carsten Peterson,et al.  Random Boolean network models and the yeast transcriptional network , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Christopher G. Langton,et al.  Computation at the edge of chaos: Phase transitions and emergent computation , 1990 .

[16]  Hod Lipson,et al.  Networks, dynamics, and modularity. , 2004, Physical review letters.

[17]  Ricard V. Solé,et al.  Phase transitions and complex systems: Simple, nonlinear models capture complex systems at the edge of chaos , 1996, Complex..

[18]  Ming Li,et al.  An Introduction to Kolmogorov Complexity and Its Applications , 2019, Texts in Computer Science.

[19]  Mike Mannion,et al.  Complex systems , 1997, Proceedings International Conference and Workshop on Engineering of Computer-Based Systems.

[20]  D. Vernon Inform , 1995, Encyclopedia of the UN Sustainable Development Goals.

[21]  O. Yli-Harja,et al.  Perturbation avalanches and criticality in gene regulatory networks. , 2006, Journal of theoretical biology.

[22]  B. Derrida,et al.  Random networks of automata: a simple annealed approximation , 1986 .

[23]  Ilya Shmulevich,et al.  Eukaryotic cells are dynamically ordered or critical but not chaotic. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[24]  I. Shmulevich,et al.  Basin entropy in Boolean network ensembles. , 2007, Physical review letters.

[25]  Bin Ma,et al.  The similarity metric , 2001, IEEE Transactions on Information Theory.

[26]  Stefan Bornholdt,et al.  Topology of biological networks and reliability of information processing , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[27]  Paul M. B. Vitányi,et al.  Clustering by compression , 2003, IEEE Transactions on Information Theory.

[28]  Jerrold E. Marsden,et al.  Perspectives and Problems in Nonlinear Science , 2003 .

[29]  Péter Gács,et al.  Information Distance , 1998, IEEE Trans. Inf. Theory.

[30]  Stuart A. Kauffman,et al.  The origins of order , 1993 .

[31]  S. Kauffman,et al.  Measures for information propagation in Boolean networks , 2007 .

[32]  P. Cluzel,et al.  A natural class of robust networks , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[33]  Arantxa Etxeverria The Origins of Order , 1993 .

[34]  Stuart A. Kauffman,et al.  The ensemble approach to understand genetic regulatory networks , 2004 .

[35]  Yigal D. Nochomovitz,et al.  Highly designable phenotypes and mutational buffers emerge from a systematic mapping between network topology and dynamic output. , 2006, Proceedings of the National Academy of Sciences of the United States of America.