Modeling Primary Breakup: A Three-Dimensional Eulerian Level Set/Vortex Sheet Method for Two-Phase Interface Dynamics

Abstract : Atomization processes play an important role in a wide variety of technical applications and natural phenomena, ranging from inkjet printers, gas turbines, direct injection IC- engines, and cryogenic rocket engines to ocean wave breaking and hydrothermal features. The atomization process of liquid jets and sheets is usually divided into two consecutive steps: the primary and the secondary breakup. During primary breakup, the liquid jet or sheet exhibits large scale coherent structures that interact with the gas-phase and break up into both large and small scale drops. During secondary breakup, these drops break up into ever smaller drops that finally may evaporate.

[1]  M. Herrmann A Domain Decomposition Parallelization of the Fast Marching Method , 2003 .

[2]  C. Pozrikidis,et al.  Theoretical and computational aspects of the self-induced motion of three-dimensional vortex sheets , 2000, Journal of Fluid Mechanics.

[3]  S. Osher,et al.  Regular Article: A PDE-Based Fast Local Level Set Method , 1999 .

[4]  S. Osher,et al.  Regular Article: A PDE-Based Fast Local Level Set Method , 1999 .

[5]  G. Tryggvason,et al.  A front-tracking method for viscous, incompressible, multi-fluid flows , 1992 .

[6]  D. I. Pullin,et al.  Numerical studies of surface-tension effects in nonlinear Kelvin–Helmholtz and Rayleigh–Taylor instability , 1982, Journal of Fluid Mechanics.

[7]  Christopher R. Anderson,et al.  On Vortex Methods , 1985 .

[8]  Maurizio Brocchini,et al.  The dynamics of strong turbulence at free surfaces. Part 2. Free-surface boundary conditions , 2001, Journal of Fluid Mechanics.

[9]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[10]  Marcus Herrmann,et al.  A Eulerian level set/vortex sheet method for two-phase interface dynamics , 2005 .

[11]  Roger H. Rangel,et al.  Nonlinear growth of Kelvin–Helmholtz instability: Effect of surface tension and density ratio , 1988 .

[12]  Danping Peng,et al.  Weighted ENO Schemes for Hamilton-Jacobi Equations , 1999, SIAM J. Sci. Comput..

[13]  P. F. Allen,et al.  Surface Tension , 2004 .

[14]  P. Woodward,et al.  SLIC (Simple Line Interface Calculation) , 1976 .

[15]  W. Rider,et al.  Stretching and tearing interface tracking methods , 1995 .

[16]  F. Tanner Liquid Jet Atomization and Droplet Breakup Modeling of Non-Evaporating Diesel Fuel Sprays , 1997 .

[17]  N. Peters The turbulent burning velocity for large-scale and small-scale turbulence , 1999, Journal of Fluid Mechanics.

[18]  Peter J. O'Rourke,et al.  The TAB method for numerical calculation of spray droplet breakup , 1987 .

[19]  J. Christiansen Numerical Simulation of Hydrodynamics by the Method of Point Vortices , 1997 .

[20]  J. Brackbill,et al.  Flip: A low-dissipation, particle-in-cell method for fluid flow , 1988 .

[21]  Steven A. Orszag,et al.  Generalized vortex methods for free-surface flow problems , 1982, Journal of Fluid Mechanics.

[22]  Thomas Y. Hou,et al.  The long-time motion of vortex sheets with surface tension , 1997 .

[23]  James A. Sethian,et al.  The Fast Construction of Extension Velocities in Level Set Methods , 1999 .

[24]  S. Osher,et al.  An improved level set method for incompressible two-phase flows , 1998 .

[25]  J A Sethian,et al.  A fast marching level set method for monotonically advancing fronts. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[26]  R. Reitz,et al.  Structure of High-Pressure Fuel Sprays , 1987 .

[27]  S. Zaleski,et al.  Volume-of-Fluid Interface Tracking with Smoothed Surface Stress Methods for Three-Dimensional Flows , 1999 .

[28]  R. Reitz Modeling atomization processes in high-pressure vaporizing sprays , 1987 .

[29]  Thomas Y. Hou,et al.  Boundary integral methods for multicomponent fluids and multiphase materials , 2001 .

[30]  William J. Rider,et al.  Comments on Modeling Interfacial Flows with Volume-of-Fluid Methods , 1995 .

[31]  J. Brackbill,et al.  A continuum method for modeling surface tension , 1992 .

[32]  Martin Oberlack,et al.  On symmetries and averaging of the G-equation for premixed combustion , 2001, Proceeding of Second Symposium on Turbulence and Shear Flow Phenomena.

[33]  J. Sethian,et al.  FRONTS PROPAGATING WITH CURVATURE DEPENDENT SPEED: ALGORITHMS BASED ON HAMILTON-JACOB1 FORMULATIONS , 2003 .