On Stopping Criteria for Genetic Algorithms

In this work we present a critical analysis of various aspects associated with the specification of termination conditions for simple genetic algorithms. The study, which is based on the use of Markov chains, identifies the main difficulties that arise when one wishes to set meaningful upper bounds for the number of iterations required to guarantee the convergence of such algorithms with a given confidence level. The latest trends in the design of stopping rules for evolutionary algorithms in general are also put forward and some proposals to overcome existing limitations in this respect are suggested.

[1]  Dalila Megherbi,et al.  Implementation of a parallel Genetic Algorithm on a cluster of workstations: Traveling Salesman Problem, a case study , 2001, Future Gener. Comput. Syst..

[2]  Enrique Alba,et al.  Parallelism and evolutionary algorithms , 2002, IEEE Trans. Evol. Comput..

[3]  Haldun Aytug,et al.  Stopping Criteria for Finite Length Genetic Algorithms , 1996, INFORMS J. Comput..

[4]  Michael D. Vose,et al.  Modeling genetic algorithms with Markov chains , 1992, Annals of Mathematics and Artificial Intelligence.

[5]  T. J. Gordon,et al.  Genetic learning automata for function optimization , 2002, IEEE Trans. Syst. Man Cybern. Part B.

[6]  Gary J. Koehler,et al.  New stopping criterion for genetic algorithms , 2000, Eur. J. Oper. Res..

[7]  Xin Feng,et al.  A fuzzy stop criterion for genetic algorithms using performance estimation , 1994, Proceedings of 1994 IEEE 3rd International Fuzzy Systems Conference.

[8]  Erhan Çinlar,et al.  Introduction to stochastic processes , 1974 .

[9]  Kenneth A. De Jong,et al.  Using Markov Chains to Analyze GAFOs , 1994, FOGA.

[10]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[11]  Gary B. Lamont,et al.  Considerations in engineering parallel multiobjective evolutionary algorithms , 2003, IEEE Trans. Evol. Comput..

[12]  Scott B. Baden,et al.  Analysis of the numerical effects of parallelism on a parallel genetic algorithm , 1996, Proceedings of International Conference on Parallel Processing.

[13]  Gilles Brassard,et al.  Algorithmics - theory and practice , 1988 .

[14]  José Carlos Príncipe,et al.  A Markov Chain Framework for the Simple Genetic Algorithm , 1993, Evolutionary Computation.

[15]  Kenneth A. De Jong,et al.  Genetic Algorithms are NOT Function Optimizers , 1992, FOGA.

[16]  Riccardo Poli,et al.  Exact Schema Theorem and Effective Fitness for GP with One-Point Crossover , 2000, GECCO.

[17]  Günter Rudolph,et al.  Convergence analysis of canonical genetic algorithms , 1994, IEEE Trans. Neural Networks.

[18]  Stephen Marshall,et al.  Convergence Criteria for Genetic Algorithms , 2000, SIAM J. Comput..

[19]  Zbigniew Michalewicz,et al.  Parameter control in evolutionary algorithms , 1999, IEEE Trans. Evol. Comput..

[20]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[21]  Thomas Bäck,et al.  Evolutionary computation: comments on the history and current state , 1997, IEEE Trans. Evol. Comput..