A ‘well‐balanced’ finite volume scheme for blood flow simulation

We are interested in simulating blood flow in arteries with a one dimensional model. Thanks to recent developments in the analysis of hyperbolic system of conservation laws (in the Saint-Venant/ shallow water equations context) we will perform a simple finite volume scheme. We focus on conservation properties of this scheme which were not previously considered. To emphasize the necessity of this scheme, we present how a too simple numerical scheme may induce spurious flows when the basic static shape of the radius changes. On contrary, the proposed scheme is "well-balanced": it preserves equilibria of Q = 0. Then examples of analytical or linearized solutions with and without viscous damping are presented to validate the calculations. The influence of abrupt change of basic radius is emphasized in the case of an aneurism.

[1]  van Aa Anton Steenhoven,et al.  Model studies of the aortic pressure rise just after valve closure , 1986, Journal of Fluid Mechanics.

[2]  Meinrat O. Andreae,et al.  Influence of energetic wind and waves on gas transfer in a large wind–wave tunnel facility , 2007 .

[3]  N. Gouta,et al.  A finite volume solver for 1D shallow‐water equations applied to an actual river , 2002 .

[4]  Mette S Olufsen,et al.  Structured tree outflow condition for blood flow in larger systemic arteries. , 1999, American journal of physiology. Heart and circulatory physiology.

[5]  T. Hou,et al.  Why nonconservative schemes converge to wrong solutions: error analysis , 1994 .

[6]  Hui Ding,et al.  Accuracy of 1D microvascular flow models in the limit of low Reynolds numbers. , 2009, Microvascular research.

[7]  Jostein R. Natvig,et al.  Well-balanced finite volume schemes of arbitrary order of accuracy for shallow water flows , 2006, J. Comput. Phys..

[8]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[9]  Pierre-Yves Lagrée,et al.  An inverse technique to deduce the elasticity of a large artery , 2000 .

[10]  Manuel Jesús Castro Díaz,et al.  Why many theories of shock waves are necessary: Convergence error in formally path-consistent schemes , 2008, J. Comput. Phys..

[11]  Stéphane Popinet,et al.  Quadtree-adaptive tsunami modelling , 2011 .

[12]  S. Osher,et al.  Some results on uniformly high-order accurate essentially nonoscillatory schemes , 1986 .

[13]  Olivier Delestre Simulation du ruissellement d'eau de pluie sur des surfaces agricoles. (Rain water overland flow on agricultural fields simulation) , 2010 .

[14]  F. N. van de Vosse,et al.  Finite-element-based computational methods for cardiovascular fluid-structure interaction , 2003 .

[15]  S. Osher,et al.  Regular ArticleUniformly High Order Accurate Essentially Non-oscillatory Schemes, III , 1997 .

[16]  R. LeVeque,et al.  Balancing Source Terms and Flux Gradientsin High-Resolution Godunov Methods : The Quasi-Steady Wave-Propogation AlgorithmRandall , 1998 .

[17]  Emmanuel Audusse,et al.  A well-balanced positivity preserving second-order scheme for shallow water flows on unstructured meshes , 2005 .

[18]  L. Formaggia,et al.  Numerical modeling of 1D arterial networks coupled with a lumped parameters description of the heart , 2006, Computer methods in biomechanics and biomedical engineering.

[19]  M. Rossi,et al.  Etude de l'écoulement du sang dans les artères : effets nonlinéaires et dissipatifs , 1996 .

[20]  D. F. Young,et al.  Computer simulation of arterial flow with applications to arterial and aortic stenoses. , 1992, Journal of biomechanics.

[21]  Dongbin Xiu,et al.  Parametric uncertainty analysis of pulse wave propagation in a model of a human arterial network , 2007, J. Comput. Phys..

[22]  T. Gallouët,et al.  Some approximate Godunov schemes to compute shallow-water equations with topography , 2003 .

[23]  Shi Jin,et al.  A STEADY-STATE CAPTURING METHOD FOR HYPERBOLIC SYSTEMS WITH GEOMETRICAL SOURCE , 2022 .

[24]  J. Womersley XXIV. Oscillatory motion of a viscous liquid in a thin-walled elastic tube—I: The linear approximation for long waves , 1955 .

[25]  M Zagzoule,et al.  Unsteady wall shear stress in a distensible tube. , 1991, Journal of biomechanics.

[26]  François Bouchut,et al.  Upwinding of the source term at interfaces for Euler equations with high friction , 2007, Comput. Math. Appl..

[27]  Gregory A Petsko,et al.  The walking dead , 2011, Genome Biology.

[28]  Olivier Delestre,et al.  SIMULATION OF RAINFALL EVENTS AND OVERLAND FLOW , 2008 .

[29]  Jean-Pierre Vilotte,et al.  Numerical modeling of self‐channeling granular flows and of their levee‐channel deposits , 2006 .

[30]  Nicolas G. Wright,et al.  Simple and efficient solution of the shallow water equations with source terms , 2010 .

[31]  R. LeVeque Numerical methods for conservation laws , 1990 .

[32]  Doron Levy,et al.  CENTRAL-UPWIND SCHEMES FOR THE SAINT-VENANT SYSTEM , 2002 .

[33]  Pierre-Yves Lagrée,et al.  One-dimensional model for propagation of a pressure wave in a model of the human arterial network: comparison of theoretical and experimental results. , 2011, Journal of biomechanical engineering.

[34]  Manmohan Singh,et al.  Modelling the effect of proposed channel deepening on the tides in Port Phillip Bay , 2005 .

[35]  Shi Jin,et al.  A steady-state capturing method for hyperbolic systems with geometrical source terms , 2001 .

[36]  J. Greenberg,et al.  A well-balanced scheme for the numerical processing of source terms in hyperbolic equations , 1996 .

[37]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[38]  T. Pedley The Fluid Mechanics of Large Blood Vessels: Contents , 1980 .

[39]  S. Osher,et al.  Uniformly high order accurate essentially non-oscillatory schemes, 111 , 1987 .

[40]  J. J. Stoker Water Waves: The Mathematical Theory with Applications , 1957 .

[41]  Alfio Quarteroni,et al.  Analysis of a Geometrical Multiscale Blood Flow Model Based on the Coupling of ODEs and Hyperbolic PDEs , 2005, Multiscale Model. Simul..

[42]  Alfredo Bermúdez,et al.  Upwind methods for hyperbolic conservation laws with source terms , 1994 .

[43]  John Wainwright,et al.  Measurement and modelling of high resolution flow-velocity data under simulated rainfall on a low-slope sandy soil , 2008 .

[44]  Jean-Frédéric Gerbeau,et al.  Parameter identification for a one-dimensional blood flow model , 2005 .

[45]  Yulong Xing,et al.  High-order well-balanced finite volume WENO schemes for shallow water equation with moving water , 2007, J. Comput. Phys..

[46]  Spencer J. Sherwin,et al.  Computational modelling of 1D blood flow with variable mechanical properties and its application to the simulation of wave propagation in the human arterial system , 2003 .

[47]  Olivier Delestre,et al.  Simulation of Rain-Water Overland-Flow , 2008 .

[48]  Nicola Cavallini,et al.  Finite volume and WENO scheme in one-dimensional vascular system modelling , 2008, Comput. Math. Appl..

[49]  M. Vázquez-Cendón Improved Treatment of Source Terms in Upwind Schemes for the Shallow Water Equations in Channels with Irregular Geometry , 1999 .

[50]  M Zagzoule,et al.  A global mathematical model of the cerebral circulation in man. , 1986, Journal of biomechanics.

[51]  P. Lax,et al.  On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws , 1983 .

[52]  Randall J. LeVeque,et al.  Balancing Source Terms and Flux Gradients in High-Resolution Godunov Methods , 1998 .

[53]  Valerio Caleffi,et al.  Case Study: Malpasset Dam-Break Simulation using a Two-Dimensional Finite Volume Method , 2002 .

[54]  Olivier Delestre,et al.  A Numerical Scheme for a Viscous Shallow Water Model with Friction , 2011, J. Sci. Comput..

[55]  Hilary Ockendon,et al.  Inviscid fluid flows , 1983 .

[56]  Manuel J. Castro,et al.  WELL-BALANCED NUMERICAL SCHEMES BASED ON A GENERALIZED HYDROSTATIC RECONSTRUCTION TECHNIQUE , 2007 .

[57]  B. Perthame,et al.  A kinetic scheme for the Saint-Venant system¶with a source term , 2001 .

[58]  M. Thanh,et al.  Well-balanced scheme for shallow water equations with arbitrary topography , 2008 .

[59]  Silvia Becagli,et al.  Holocene volcanic history as recorded in the sulfate stratigraphy of the European Project for Ice Coring in Antarctica Dome C (EDC96) ice core , 2005 .

[60]  Kim H. Parker,et al.  A brief history of arterial wave mechanics , 2009, Medical & Biological Engineering & Computing.

[61]  Jean-François Remacle,et al.  Spatial and spectral superconvergence of discontinuous Galerkin method for hyperbolic problems , 2008 .

[62]  Tomás Morales de Luna,et al.  A Subsonic-Well-Balanced Reconstruction Scheme for Shallow Water Flows , 2010, SIAM J. Numer. Anal..

[63]  Fabien Marche,et al.  A Positive Preserving High Order VFRoe Scheme for Shallow Water Equations: A Class of Relaxation Schemes , 2008, SIAM J. Sci. Comput..

[64]  Pierre Fabrie,et al.  Evaluation of well‐balanced bore‐capturing schemes for 2D wetting and drying processes , 2007 .

[65]  Mária Lukáčová-Medvid’ová,et al.  Comparison study of some finite volume and finite element methods for the shallow water equations with bottom topography and friction terms , 2006 .

[66]  Frédéric Coquel,et al.  Nonlinear projection methods for multi-entropies Navier-Stokes systems , 2007, Math. Comput..

[67]  Jean-Antoine Désidéri,et al.  Upwind schemes for the two-dimensional shallow water equations with variable depth using unstructured meshes , 1998 .

[68]  M. Lighthill,et al.  Waves In Fluids , 2002 .

[69]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .

[70]  Nicola Cavallini,et al.  One-dimensional Modelling of Venous Pathologies: Finite Volume and WENO Schemes , 2010 .

[71]  M. Olufsen,et al.  Numerical Simulation and Experimental Validation of Blood Flow in Arteries with Structured-Tree Outflow Conditions , 2000, Annals of Biomedical Engineering.

[72]  P. K. Kundu,et al.  Fluid Mechanics: Fourth Edition , 2008 .

[73]  Marie-Odile Bristeau,et al.  Boundary Conditions for the Shallow Water Equations solved by Kinetic Schemes , 2001 .

[74]  Q. Liang,et al.  Numerical resolution of well-balanced shallow water equations with complex source terms , 2009 .

[75]  Miguel A. Fernández,et al.  A projection semi‐implicit scheme for the coupling of an elastic structure with an incompressible fluid , 2007 .

[76]  Emmanuel Audusse,et al.  A Fast and Stable Well-Balanced Scheme with Hydrostatic Reconstruction for Shallow Water Flows , 2004, SIAM J. Sci. Comput..

[77]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .

[78]  L. Gosse A well-balanced flux-vector splitting scheme designed for hyperbolic systems of conservation laws with source terms☆ , 2000 .

[79]  F. Fiedler,et al.  International Journal for Numerical Methods in Fluids a Numerical Method for Simulating Discontinuous Shallow Flow over an Infiltrating Surface , 2022 .

[80]  Stéphane Zaleski,et al.  A branched one-dimensional model of vessel networks , 2009, Journal of Fluid Mechanics.

[81]  F. Bouchut Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws: and Well-Balanced Schemes for Sources , 2005 .

[82]  Héctor Isnardi,et al.  Die Dielektrizitätskonstante von Flüssigkeiten in ihrer Temperaturabhängigkeit , 1922 .

[83]  Emilie Marchandise,et al.  Inlet boundary conditions for blood flow simulations in truncated arterial networks. , 2011, Journal of biomechanics.

[84]  Timothy J. Pedley,et al.  The fluid mechanics of large blood vessels , 1980 .

[85]  Sylvie Lorthois,et al.  The RNS/Prandtl equations and their link with other asymptotic descriptions: Application to the wall shear stress scaling in a constricted pipe , 2005 .

[86]  Maria Lukacova-Medvidova,et al.  Well-balanced finite volume evolution Galerkin methods for the shallow water equations with source terms , 2005 .

[87]  Jean-Pierre Vilotte,et al.  On the use of Saint Venant equations to simulate the spreading of a granular mass , 2005 .

[88]  S. Sherwin,et al.  Lumped parameter outflow models for 1-D blood flow simulations: Effect on pulse waves and parameter estimation , 2008 .

[89]  Javier Murillo,et al.  Friction term discretization and limitation to preserve stability and conservation in the 1D shallow‐water model: Application to unsteady irrigation and river flow , 2008 .