Computing efficiently the non-properness set of polynomial maps on the plane∗

We introduce novel mathematical and computational tools to develop a complete and efficient algorithm for computing the set of non-properness of polynomial maps on the plane. This is a subset of K where a dominant polynomial map f : K → K is not proper; K could be either C or R. Unlike previously known approaches we make no assumptions on f . The algorithm takes into account the sparsity of polynomials as it depends on (the Minkowski sum of) the Newton polytopes of f . As a byproduct we provide a finer representation of the set of non-properness as a union of algebraic or semi-algebraic sets, that correspond to edges of the Newton polytope, which is of independent interest. Finally, we present a precise bit complexity analysis of the algorithm and a prototype implementation in maple.

[1]  G. Fischer,et al.  Plane Algebraic Curves , 1921, Nature.

[2]  W. Fulton,et al.  Algebraic Curves: An Introduction to Algebraic Geometry , 1969 .

[3]  D. N. Bernshtein The number of roots of a system of equations , 1975 .

[4]  Sean A Broughton,et al.  Milnor numbers and the topology of polynomial hypersurfaces , 1988 .

[5]  D. S. Arnon,et al.  Algorithms in real algebraic geometry , 1988 .

[6]  András Némethi,et al.  On the bifurcation set of a polynomial function and Newton boundary, II , 1990 .

[7]  Paul Le Guernic,et al.  Polynomial dynamical systems over finite fields , 1991 .

[8]  Zbigniew Jelonek,et al.  The set of points at which a polynomial map is not proper , 1993 .

[9]  D. Siersma,et al.  Singularities at infinity and their vanishing cycles , 1995 .

[10]  Adam Parusinski,et al.  On the bifurcation set of complex polynomial with isolated singularities at infinity , 1995 .

[11]  Arne Storjohann,et al.  Near optimal algorithms for computing Smith normal forms of integer matrices , 1996, ISSAC '96.

[12]  L. Fourrier Topologie d'un polynôme de deux variables complexes au voisinage de l'infini , 1996 .

[13]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[14]  Zbigniew Jelonek,et al.  Testing sets for properness of polynomial mappings , 1999 .

[15]  Chee-Keng Yap,et al.  Fundamental problems of algorithmic algebra , 1999 .

[16]  Thomas Lickteig,et al.  Sylvester-Habicht Sequences and Fast Cauchy Index Computation , 2001, J. Symb. Comput..

[17]  Victor Y. Pan,et al.  Univariate Polynomials: Nearly Optimal Algorithms for Numerical Factorization and Root-finding , 2002, J. Symb. Comput..

[18]  Zbigniew Jelonek,et al.  Geometry of real polynomial mappings , 2002 .

[19]  Anna Stasica,et al.  An effective description of the Jelonek set , 2002 .

[20]  Mark van Hoeij,et al.  A modular GCD algorithm over number fields presented with multiple extensions , 2002, ISSAC '02.

[21]  Zbigniew Jelonek,et al.  On asymptotic critical values of a complex polynomial , 2003 .

[22]  Mark van Hoeij,et al.  Algorithms for polynomial GCD computation over algebraic function fields , 2004, ISSAC '04.

[23]  Anna Stasica Geometry of the Jelonek set , 2005 .

[24]  Arne Storjohann,et al.  The shifted number system for fast linear algebra on integer matrices , 2005, J. Complex..

[25]  Anna Valette-Stasica Asymptotic values of polynomial mappings of the real plane , 2007 .

[26]  Jan Hilmar,et al.  Euclid Meets Bézout: Intersecting Algebraic Plane Curves with the Euclidean Algorithm , 2009, Am. Math. Mon..

[27]  Alexander Esterov,et al.  Discriminant of system of equations , 2011, 1110.4060.

[28]  Joris van der Hoeven,et al.  Multi-point evaluation in higher dimensions , 2012, Applicable Algebra in Engineering, Communication and Computing.

[29]  Marc Moreno Maza,et al.  On Fulton's Algorithm for Computing Intersection Multiplicities , 2012, CASC.

[30]  Michal Lason,et al.  Quantitative properties of the non-properness set of a polynomial map , 2014, Journal of Algebra and Its Applications.

[31]  Z. Jelonek,et al.  Detecting asymptotic non-regular values by polar curves , 2015, 1504.03423.

[32]  J. Lasserre An Introduction to Polynomial and Semi-Algebraic Optimization , 2015 .

[33]  Felix Breuer,et al.  Polyhedral Omega: a New Algorithm for Solving Linear Diophantine Systems , 2015, ArXiv.

[34]  A. Khovanskii Newton polytopes and irreducible components of complete intersections , 2016 .

[35]  Marina Weber,et al.  Using Algebraic Geometry , 2016 .

[36]  Michael Sagraloff,et al.  On the Complexity of Solving Zero-Dimensional Polynomial Systems via Projection , 2016, ISSAC.

[37]  Éric Schost,et al.  Sparse Rational Univariate Representation , 2017, ISSAC.

[38]  Joe Kileel,et al.  Minimal Problems for the Calibrated Trifocal Variety , 2016, SIAM J. Appl. Algebra Geom..

[39]  Luis Renato G. Dias,et al.  Toward Effective Detection of the Bifurcation Locus of Real Polynomial Maps , 2015, Found. Comput. Math..

[40]  Josef Schicho,et al.  The number of realizations of a Laman graph , 2018, SIAM J. Appl. Algebra Geom..

[41]  Jana Chalmoviansk'a,et al.  Computing local intersection multiplicity of plane curves via blowup , 2019, 1905.00701.

[42]  Timothy Duff,et al.  PLMP - Point-Line Minimal Problems in Complete Multi-View Visibility , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[43]  Boulos El Hilany Describing the Jelonek set of polynomial maps via Newton polytopes , 2019, 1909.07016.

[44]  Editors , 2019, Physics Letters A.

[45]  Fabrice Rouillier,et al.  On the geometry and the topology of parametric curves , 2020, ISSAC.

[46]  Anton Leykin,et al.  PL1P - Point-line Minimal Problems under Partial Visibility in Three Views , 2020, ECCV.

[47]  Bernard Mourrain,et al.  Separation bounds for polynomial systems , 2020, J. Symb. Comput..

[48]  J. Schicho And yet it moves: Paradoxically moving linkages in kinematics , 2020, 2004.12635.

[49]  P. Alam,et al.  R , 1823, The Herodotus Encyclopedia.

[50]  Boulos El Hilany Counting isolated points outside the image of a polynomial map , 2019, Advances in Geometry.

[51]  Marie-Françoise Roy,et al.  Bounds for Polynomials on Algebraic Numbers and Application to Curve Topology , 2018, Discrete & Computational Geometry.