Highly Efficient Nanoporous TiO2‐Polythiophene Hybrid Solar Cells Based on Interfacial Modification Using a Metal‐Free Organic Dye

[1]  Tomas Edvinsson,et al.  Influence of π-Conjugation Units in Organic Dyes for Dye-Sensitized Solar Cells , 2007 .

[2]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[3]  J. Hummelen,et al.  Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions , 1995, Science.

[4]  A J Heeger,et al.  Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. , 2007, Nature materials.

[5]  J. Moser,et al.  Merocyanine Aggregation in Mesoporous Networks , 1996 .

[6]  N. Greenham,et al.  Improved efficiency of photovoltaics based on CdSe nanorods and poly(3-hexylthiophene) nanofibers. , 2006, Physical chemistry chemical physics : PCCP.

[7]  Mohammad Khaja Nazeeruddin,et al.  Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes , 1993 .

[8]  P. Liska,et al.  Acid-Base Equilibria of (2,2'-Bipyridyl-4,4'-dicarboxylic acid)ruthenium(II) Complexes and the Effect of Protonation on Charge-Transfer Sensitization of Nanocrystalline Titania. , 1999, Inorganic chemistry.

[9]  G. Boschloo,et al.  An investigation of the photosubstitution reaction between N719-dyed nanocrystalline TiO2 particles and 4-tert-butylpyridine , 2007 .

[10]  A Paul Alivisatos,et al.  Hybrid solar cells with prescribed nanoscale morphologies based on hyperbranched semiconductor nanocrystals. , 2007, Nano letters.

[11]  Michael D. McGehee,et al.  Photovoltaic cells made from conjugated polymers infiltrated into mesoporous titania , 2003 .

[12]  M. Nazeeruddin,et al.  Highly Selective and Reversible Optical, Colorimetric, and Electrochemical Detection of Mercury(II) by Amphiphilic Ruthenium Complexes Anchored onto Mesoporous Oxide Films , 2006 .

[13]  A. Alivisatos,et al.  Hybrid Nanorod-Polymer Solar Cells , 2002, Science.

[14]  M. Grätzel,et al.  Cross surface ambipolar charge percolation in molecular triads on mesoscopic oxide films. , 2005, Journal of the American Chemical Society.

[15]  Jiachun Feng,et al.  Di‐Channel Polyfluorene Containing Spiro‐Bridged Oxadiazole Branches , 2005 .

[16]  N. E. Coates,et al.  Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing , 2007, Science.

[17]  J. Durrant,et al.  Parameters Influencing Charge Separation in Solid‐State Dye‐Sensitized Solar Cells Using Novel Hole Conductors , 2006 .

[18]  Michael D. McGehee,et al.  Polymer-based solar cells , 2007 .

[19]  Philippe Belleville,et al.  All‐Solid‐State Dye‐Sensitized Nanoporous TiO2 Hybrid Solar Cells with High Energy‐Conversion Efficiency , 2006 .

[20]  Michael D. McGehee,et al.  Effects of molecular interface modification in hybrid organic-inorganic photovoltaic cells , 2007 .

[21]  Marco Piccirelli,et al.  High efficiency solid-state photovoltaic device due to inhibition of interface charge recombination , 2001 .

[22]  Hidetoshi Miura,et al.  Organic Dye for Highly Efficient Solid‐State Dye‐Sensitized Solar Cells , 2005 .

[23]  Craig A Grimes,et al.  Self-assembled hybrid polymer-TiO2 nanotube array heterojunction solar cells. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[24]  T. Sano,et al.  Solid-State Dye-Sensitized Solar Cells Using Poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene-vinylene] as a Hole-Transporting Material , 2006 .

[25]  S. Ramakrishna,et al.  Anionic benzothiadiazole containing polyfluorene and oligofluorene as organic sensitizers for dye-sensitized solar cells. , 2008, Chemical communications.

[26]  Bin Liu,et al.  Improved adhesion of interconnected TiO2 nanofiber network on conductive substrate and its application in polymer photovoltaic devices , 2008 .

[27]  Klaus Meerholz,et al.  Efficiency enhancements in solid-state hybrid solar cells via reduced charge recombination and increased light capture. , 2007, Nano letters.

[28]  Jenny Nelson,et al.  Hybrid polymer-metal oxide thin films for photovoltaic applications{ , 2007 .

[29]  H. Ohkita,et al.  Improvement of charge injection efficiency in organic-inorganic hybrid solar cells by chemical modification of metal oxides with organic molecules , 2007 .

[30]  Fuyou Li,et al.  ORGANIC D-PI-A DYES FOR DYE-SENSITIZED SOLAR CELL , 2007 .

[31]  Rainer F. Mahrt,et al.  Efficient two layer leds on a polymer blend basis , 1995 .

[32]  Donal D. C. Bradley,et al.  The Effect of Polymer Optoelectronic Properties on the Performance of Multilayer Hybrid Polymer/TiO2 Solar Cells , 2005 .

[33]  Junbiao Peng,et al.  High‐Efficiency, Saturated Red‐Phosphorescent Polymer Light‐Emitting Diodes Based on Conjugated and Non‐Conjugated Polymers Doped with an Ir Complex , 2004 .

[34]  P. C. Chui,et al.  Titania bicontinuous network structures for solar cell applications , 2005 .

[35]  S. Haque,et al.  Transient optical studies of interfacial energetic disorder at nanostructured dye-sensitised inorganic/organic semiconductor heterojunctions. , 2003, Chemphyschem : a European journal of chemical physics and physical chemistry.

[36]  C. S. Karthikeyan,et al.  Key aspects of individual layers in solid-state dye-sensitized solar cells and novel concepts to improve their performance , 2008 .

[37]  Hidetoshi Miura,et al.  Highly-efficient metal-free organic dyes for dye-sensitized solar cells. , 2003 .

[38]  Jenny Nelson,et al.  Hybrid polymer/zinc oxide photovoltaic devices with vertically oriented ZnO nanorods and an amphiphilic molecular interface layer. , 2006, The journal of physical chemistry. B.

[39]  Josef Salbeck,et al.  Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies , 1998, Nature.

[40]  Udo Bach,et al.  Modification of TiO2 heterojunctions with benzoic acid derivatives in hybrid molecular solid-state devices , 2000 .

[41]  Michael Grätzel,et al.  Efficiency improvement in solid-state-dye-sensitized photovoltaics with an amphiphilic Ruthenium-dye , 2005 .

[42]  Monica Lira-Cantu,et al.  Influence of doped anions on poly(3,4-ethylenedioxythiophene) as hole conductors for iodine-free solid-state dye-sensitized solar cells. , 2008, Journal of the American Chemical Society.

[43]  S. Shaheen,et al.  Dependence of band offset and open-circuit voltage on the interfacial interaction between TiO2 and carboxylated polythiophenes. , 2006, The journal of physical chemistry. B.

[44]  Ladislav Kavan,et al.  Highly efficient semiconducting TiO2 photoelectrodes prepared by aerosol pyrolysis , 1995 .

[45]  Michael Grätzel,et al.  Solar energy conversion by dye-sensitized photovoltaic cells. , 2005, Inorganic chemistry.

[46]  C. Tang Two‐layer organic photovoltaic cell , 1986 .

[47]  W. Su,et al.  Improved performance of polymer/TiO2 nanorod bulk heterojunction photovoltaic devices by interface modification , 2008 .

[48]  T. Miyasaka,et al.  A solid-state dye-sensitized photovoltaic cell with a poly(N-vinyl-carbazole) hole transporter mediated by an alkali iodide. , 2005, Chemical communications.