Deep learning for seismic lithology prediction

[1]  Renato Campanini,et al.  Synopsis of supervised and unsupervised pattern classification techniques applied to volcanic tremor data at Mt Etna, Italy , 2009 .

[2]  Christopher Juhlin,et al.  Application of the continuous wavelet transform on seismic data for mapping of channel deposits and gas detection at the CO2SINK site, Ketzin, Germany , 2009 .

[3]  Tapan Mukerji,et al.  Mapping lithofacies and pore‐fluid probabilities in a North Sea reservoir: Seismic inversions and statistical rock physics , 2001 .

[4]  D. Okaya,et al.  Frequency‐time decomposition of seismic data using wavelet‐based methods , 1995 .

[5]  Ursula Iturrarán-Viveros,et al.  Artificial Neural Networks applied to estimate permeability, porosity and intrinsic attenuation using seismic attributes and well-log data , 2014 .

[6]  Mahesh Pal,et al.  Support vector machines‐based modelling of seismic liquefaction potential , 2006 .

[7]  Mary M. Poulton,et al.  Neural networks as an intelligence amplification tool: A review of applications , 2002 .

[8]  Alexey Gokhberg,et al.  A neural network for noise correlation classification , 2018 .

[9]  Brendon Hall,et al.  Facies classification using machine learning , 2016 .

[10]  Nasser M. Nasrabadi,et al.  Pattern Recognition and Machine Learning , 2006, Technometrics.

[11]  Subrata Chakraborty,et al.  Velocity inversion in cross-hole seismic tomography bycounter-propagation neural network, genetic algorithmand evolutionary programming techniques , 1999 .

[12]  Wen-kai Lu,et al.  Supervised seismic facies analysis based on image segmentation , 2018 .

[13]  P. Schultz,et al.  Seismic‐guided estimation of log properties (Part 3: A controlled study) , 1994 .

[14]  Jürgen Schmidhuber,et al.  Deep learning in neural networks: An overview , 2014, Neural Networks.

[15]  Morteza Ahmadi,et al.  Design of neural networks using genetic algorithm for the permeability estimation of the reservoir , 2007 .

[16]  Ali Moradzadeh,et al.  Classification and identification of hydrocarbon reservoir lithofacies and their heterogeneity using seismic attributes, logs data and artificial neural networks , 2012 .

[17]  R. Young,et al.  Implications of thin layers for amplitude variation with offset (AVO) studies , 1993 .

[18]  Anil K. Jain,et al.  Artificial Neural Networks: A Tutorial , 1996, Computer.

[19]  Kevin P. Dorrington,et al.  Genetic‐algorithm/neural‐network approach to seismic attribute selection for well‐log prediction , 2004 .

[20]  P. Steeghs,et al.  Seismic sequence analysis and attribute extraction using quadratic time‐frequency representations , 2001 .

[21]  M. Matos,et al.  Unsupervised seismic facies analysis using wavelet transform and self-organizing maps , 2007 .

[22]  J. D. Robertson,et al.  Complex seismic trace analysis of thin beds , 1984 .

[23]  Jiwei Liu,et al.  Seismic Waveform Classification and First-Break Picking Using Convolution Neural Networks , 2018, IEEE Geoscience and Remote Sensing Letters.

[24]  Milo M. Backus,et al.  Interpretive advantages of 90°-phase wavelets: Part 2 — Seismic applications , 2005 .

[25]  P. Anno,et al.  Spectral decomposition of seismic data with continuous-wavelet transform , 2005 .

[26]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[27]  Shuki Ronen,et al.  Seismic‐guided estimation of log properties (Part 2: Using artificial neural networks for nonlinear attribute calibration) , 1994 .

[28]  Gerald Penn,et al.  Convolutional Neural Networks for Speech Recognition , 2014, IEEE/ACM Transactions on Audio, Speech, and Language Processing.

[29]  John Quirein,et al.  Use of multiattribute transforms to predict log properties from seismic data , 2001 .

[30]  Xin-Quan Ma,et al.  Simultaneous inversion of prestack seismic data for rock properties using simulated annealing , 2002 .

[31]  Ali Elkamel,et al.  Reservoir permeability prediction by neural networks combined with hybrid genetic algorithm and particle swarm optimization , 2013 .

[32]  John P. Castagna,et al.  Layer-thickness determination and stratigraphic interpretation using spectral inversion : Theory and application , 2008 .

[33]  Mrinal K. Sen,et al.  Artificial immune based self organizing maps for seismic facies analysis , 2012 .

[34]  P. Schultz,et al.  Seismic-guided estimation of log properties; Part 1, A data-driven interpretation methodology , 1994 .

[35]  Jing Zheng,et al.  An automatic microseismic or acoustic emission arrival identification scheme with deep recurrent neural networks , 2018 .

[36]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[37]  R. Wang,et al.  Seismic Reflectivity Inversion by Curvelet Deconvolution – A Comparative Study and Further Improvements , 2014 .

[38]  Vadim Sokolov,et al.  Deep Learning: A Bayesian Perspective , 2017, ArXiv.

[39]  Andrew Reynen,et al.  Supervised machine learning on a network scale: application to seismic event classification and detection , 2017 .

[40]  Mohammad Ali Riahi,et al.  Estimation of Reservoir Porosity and Water Saturation Based on Seismic Attributes Using Support Vector Regression Approach , 2014 .

[41]  Thierry Coléou,et al.  Interpreter's Corner—Unsupervised seismic facies classification: A review and comparison of techniques and implementation , 2003 .

[42]  Yangkang Chen,et al.  Automatic microseismic event picking via unsupervised machine learning , 2020, Geophysical Journal International.

[43]  Manfred Joswig,et al.  Chances and limits of single-station seismic event clustering by unsupervised pattern recognition , 2015 .

[44]  W. Schneider,et al.  Generalized linear inversion of reflection seismic data , 1983 .

[45]  Saumen Maiti,et al.  Neural network modelling and classification of lithofacies using well log data: A case study from KTB borehole site , 2007 .

[46]  T. Mukerji,et al.  Seismic inversion for reservoir properties combining statistical rock physics and geostatistics: A review , 2010 .

[47]  Matthew J. Cracknell,et al.  The upside of uncertainty: Identification of lithology contact zones from airborne geophysics and satellite data using random forests and support vector machines , 2013 .

[48]  H. Fattahi,et al.  Prediction of porosity and water saturation using pre-stack seismic attributes: a comparison of Bayesian inversion and computational intelligence methods , 2016, Computational Geosciences.

[49]  Eric Laloy,et al.  Training‐Image Based Geostatistical Inversion Using a Spatial Generative Adversarial Neural Network , 2017, ArXiv.

[50]  W. Pitts,et al.  A Logical Calculus of the Ideas Immanent in Nervous Activity (1943) , 2021, Ideas That Created the Future.

[51]  Yanghua Wang,et al.  Porosity prediction using the group method of data handling , 2011 .

[52]  C. Bunks,et al.  Multiscale seismic waveform inversion , 1995 .

[53]  Martin J. Blunt,et al.  Reconstruction of three-dimensional porous media using generative adversarial neural networks , 2017, Physical review. E.

[54]  Guangmin Hu,et al.  Unsupervised seismic facies analysis via deep convolutional autoencoders , 2018 .