CCS with Hennessy's merge has no finite-equational axiomatization

This paper confirms a conjecture of Bergstra and Klop's from 1984 by establishing that the process algebra obtained by adding an auxiliary operator proposed by Hennessy in 1981 to the recursion free fragment of Milner's Calculus of Communicating Systems is not finitely based modulo bisimulation equivalence. Thus, Hennessy's merge cannot replace the left merge and communication merge operators proposed by Bergstra and Klop, at least if a finite axiomatization of parallel composition modulo bisimulation equivalence is desired.

[1]  Zoltán Ésik,et al.  Nonfinite Axiomatizability of the Equational Theory of Shuffle , 1995, ICALP.

[2]  Luca Aceto On "Axiomatising Finite Concurrent Processes" , 1994, SIAM J. Comput..

[3]  Erik P. de Vink,et al.  Axiomatizing GSOS with termination , 2002, J. Log. Algebraic Methods Program..

[4]  Gérard Boudol,et al.  Algèbre de Processus et Synchronisation , 1984, Theor. Comput. Sci..

[5]  Robin Milner,et al.  Algebraic laws for nondeterminism and concurrency , 1985, JACM.

[6]  Zoltán Ésik,et al.  Shuffle binoids , 1998, RAIRO Theor. Informatics Appl..

[7]  Zoltán Ésik,et al.  Varieties Generated by Languages with Poset Operations , 1997, Math. Struct. Comput. Sci..

[8]  Christian Kirkegaard,et al.  A Runtime System for XML Transformations in Java , 2003 .

[9]  Faron Moller The Importance of the Left Merge Operator in Process Algebras , 1990, ICALP.

[10]  Jos C. M. Baeten,et al.  A brief history of process algebra , 2005, Theor. Comput. Sci..

[11]  C. A. R. Hoare,et al.  Communicating sequential processes , 1978, CACM.

[12]  Faron Moller,et al.  Axioms for concurrency , 1989 .

[13]  Robert M. Keller,et al.  Formal verification of parallel programs , 1976, CACM.

[14]  Zoltán Ésik,et al.  Series and Parallel Operations on Pomsets , 1999, FSTTCS.

[15]  Zoltán Ésik Axiomatizing the subsumption and subword preorders on finite and infinite partial words , 2002, Theor. Comput. Sci..

[16]  Vaughan R. Pratt,et al.  Modeling concurrency with partial orders , 1986, International Journal of Parallel Programming.

[17]  Luca Aceto,et al.  Some of My Favourite Results in Classic Process , 2003 .

[18]  Zoltán Ésik,et al.  Free Shuffle Algebras in Language Varieties , 1996, Theor. Comput. Sci..

[19]  Unique decomposition of processes , 1990, Bull. EATCS.

[20]  Luca Aceto,et al.  Structural Operational Semantics , 1999, Handbook of Process Algebra.

[21]  Bas Luttik,et al.  An omega-Complete Equational Specification of Interleaving , 2000, ICALP.

[22]  Jay L. Gischer,et al.  The Equational Theory of Pomsets , 1988, Theor. Comput. Sci..

[23]  Jan A. Bergstra,et al.  Process Algebra for Synchronous Communication , 1984, Inf. Control..

[24]  Steven T. Tschantz Languages under Concatenation and Shuffling , 1994, Math. Struct. Comput. Sci..

[25]  Olivier Danvy,et al.  A functional correspondence between call-by-need evaluators and lazy abstract machines , 2003, Inf. Process. Lett..

[26]  J. Grabowski,et al.  On partial languages , 1981, Fundam. Informaticae.

[27]  Zoltán Ésik,et al.  Nonfinite Axiomatizability of Shuffle Inequalities , 1995, TAPSOFT.

[28]  Jan Friso Groote A New Strategy for Proving omega-Completeness applied to Process Algebra , 1990, CONCUR.

[29]  Luca Aceto,et al.  Deriving Complete Inference Systems for a Class of GSOS Languages Generation Regular Behaviours , 1994, CONCUR.

[30]  J. Bergstra,et al.  Handbook of Process Algebra , 2001 .

[31]  David Park,et al.  Concurrency and Automata on Infinite Sequences , 1981, Theoretical Computer Science.

[32]  Olivier Danvy A Rational Deconstruction of Landin's SECD Machine , 2004, IFL.

[33]  Robin Milner,et al.  Flowgraphs and Flow Algebras , 1979, JACM.

[34]  Robert de Simone,et al.  Higher-Level Synchronising Devices in Meije-SCCS , 1985, Theor. Comput. Sci..

[35]  Faron Moller,et al.  The nonexistence of finite axiomatisations for CCS congruences , 1990, [1990] Proceedings. Fifth Annual IEEE Symposium on Logic in Computer Science.

[36]  Luca Aceto,et al.  Nested Semantics over Finite Trees are Equationally Hard: Invited Talk , 2003, EXPRESS.

[37]  Robin Milner,et al.  Communication and concurrency , 1989, PHI Series in computer science.

[38]  Jos C. M. Baeten,et al.  Process Algebra , 2007, Handbook of Dynamic System Modeling.

[39]  Gordon D. Plotkin,et al.  A structural approach to operational semantics , 2004, J. Log. Algebraic Methods Program..

[40]  Frits W. Vaandrager,et al.  Turning SOS Rules into Equations , 1994, Inf. Comput..

[41]  Kim G. Larsen,et al.  Regular languages definable by Lindström quantifiers , 2003, RAIRO Theor. Informatics Appl..

[42]  Matthew Hennessy,et al.  Algebraic theory of processes , 1988, MIT Press series in the foundations of computing.

[43]  Zoltán Ésik,et al.  Axiomatizing Shuffle and Concatenation in Languages , 1997, Inf. Comput..

[44]  Bas Luttik,et al.  CCS with Hennessy's merge has no finite equational axiomatization , 2003 .

[45]  Philipp Gerhardy,et al.  Extracting Herbrand disjunctions by functional interpretation , 2005, Arch. Math. Log..