Orientation Mediated Enhancement on Magnetic Hyperthermia of Fe3O4 Nanodisc

A two-step chemical approach to synthesize high quality Fe3O4 nanodisc is reported. The magnetic hyperthermia properties of the nanodisc and isotropic nanoparticles are investigated systematically. The results suggest that the nanodisc shows much higher specific absorption rate (SAR) than isotropic nanoparticles. This is attributed to the parallel alignment of nanodisc with respect to the alternating current magnetic field, which is confirmed by good agreement between experimental results and micromagnetic simulation. It is found that such parallel alignment could enhance the SAR value by a factor of approximate to 2 with respect to the randomly oriented case. The above results indicate that the nanodisc provides an excellent thermal seed for magnetic hyperthermia. This study sheds the light on the magnetic hyperthermia mechanism of magnetic nanodisc and it also opens the window to explore high efficiency thermal seeds by controlling the orientation of magnetic nanostructures.

[1]  Jinwoo Cheon,et al.  Exchange-coupled magnetic nanoparticles for efficient heat induction. , 2011, Nature nanotechnology.

[2]  J. Greneche,et al.  Hydrothermal synthesis of monodisperse magnetite nanoparticles , 2006 .

[3]  Marc Respaud,et al.  Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: Application to magnetic hyperthermia optimization , 2011 .

[4]  Caroline A. Ross,et al.  Micromagnetic behavior of conical ferromagnetic particles , 2001 .

[5]  L. Lacroix,et al.  Large specific absorption rates in the magnetic hyperthermia properties of metallic iron nanocubes , 2009, 0907.4063.

[6]  G. Schütz,et al.  Critical thickness for high-remanent single-domain configurations in square ferromagnetic thin platelets , 2003 .

[7]  D. Baldomir,et al.  Multiplying Magnetic Hyperthermia Response by Nanoparticle Assembling , 2014 .

[8]  P. Chandrasekharan,et al.  Facile synthesis of water-stable magnetite nanoparticles for clinical MRI and magnetic hyperthermia applications. , 2010, Nanomedicine.

[9]  S. Or,et al.  Microwave complex permeability of Fe3O4 nanoflake composites with and without magnetic field-induced rotational orientation , 2013 .

[10]  Sangjin Park,et al.  Drug-loaded superparamagnetic iron oxide nanoparticles for combined cancer imaging and therapy in vivo. , 2008, Angewandte Chemie.

[11]  Morteza Mahmoudi,et al.  Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles. , 2011, Advances in colloid and interface science.

[12]  Carlos Rinaldi,et al.  EGFR-targeted magnetic nanoparticle heaters kill cancer cells without a perceptible temperature rise. , 2011, ACS nano.

[13]  Puneet Mishra,et al.  Resistive phase transition of the superconducting Si(111)-(7×3)-In surface , 2013, Nanoscale Research Letters.

[14]  Oded Maimon,et al.  Predictive Toxicology of cobalt ferrite nanoparticles: comparative in-vitro study of different cellular models using methods of knowledge discovery from data , 2013, Particle and Fibre Toxicology.

[15]  Wei Zheng,et al.  Manganese toxicity upon overexposure , 2004, NMR in biomedicine.

[16]  J. Ding,et al.  Synthesis of α -Fe 2 O 3 Templates via Hydrothermal Route and Fe 3 O 4 Particles Through Subsequent Chemical Reduction , 2013 .

[17]  J. Ding,et al.  Stable vortex magnetite nanorings colloid: Micromagnetic simulation and experimental demonstration , 2012 .

[18]  Juan Zhou,et al.  Preparation and characterization of spindle-like Fe3O4 mesoporous nanoparticles , 2011, Nanoscale research letters.

[19]  Werner A. Kaiser,et al.  Maghemite nanoparticles with very high AC-losses for application in RF-magnetic hyperthermia , 2004 .

[20]  Jun Ding,et al.  Magnetic nanoparticle-loaded polymer nanospheres as magnetic hyperthermia agents. , 2014, Journal of materials chemistry. B.

[21]  C L Chien,et al.  Magnetic bistability and controllable reversal of asymmetric ferromagnetic nanorings. , 2006, Physical review letters.

[22]  C. Kumar,et al.  Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. , 2011, Advanced drug delivery reviews.

[23]  S. Dutz,et al.  Magnetic particle hyperthermia—biophysical limitations of a visionary tumour therapy , 2007 .

[24]  H. Gu,et al.  Oleic acid coating on the monodisperse magnetite nanoparticles , 2006 .

[25]  Jaeha Shin,et al.  Magnetic manipulation of bacterial magnetic nanoparticle-loaded neurospheres. , 2014, Integrative biology : quantitative biosciences from nano to macro.

[26]  L. Chou,et al.  Systematic Study of the Growth of Aligned Arrays of α‐Fe2O3 and Fe3O4 Nanowires by a Vapor–Solid Process , 2006 .

[27]  T. Kline,et al.  Experimental and theoretical investigation of cubic FeCo nanoparticles for magnetic hyperthermia , 2009 .

[28]  Karl-Titus Hoffmann,et al.  Post-mortem studies in glioblastoma patients treated with thermotherapy using magnetic nanoparticles. , 2009, Biomaterials.

[29]  Francesca Peiró,et al.  Learning from Nature to Improve the Heat Generation of Iron-Oxide Nanoparticles for Magnetic Hyperthermia Applications , 2013, Scientific Reports.

[30]  R. Victora,et al.  Optimization of magnetic anisotropy and applied fields for hyperthermia applications , 2010 .

[31]  John B Weaver,et al.  Simulations of magnetic nanoparticle Brownian motion. , 2012, Journal of applied physics.

[32]  M. Sastry,et al.  Formation of Water-Dispersible Gold Nanoparticles Using a Technique Based on Surface-Bound Interdigitated Bilayers , 2003 .

[33]  Ingrid Hilger,et al.  Heating potential of iron oxides for therapeutic purposes in interventional radiology. , 2002, Academic radiology.

[34]  S. Shivashankar,et al.  Single crystalline magnetite, maghemite, and hematite nanoparticles with rich coercivity , 2014 .

[35]  L. Lacroix,et al.  Magnetic hyperthermia in single-domain monodisperse FeCo nanoparticles: Evidences for Stoner-Wohlfarth behavior and large losses , 2008, 0810.4109.

[36]  B. Maranville,et al.  Edge saturation fields and dynamic edge modes in ideal and non-ideal magnetic film edges , 2006, INTERMAG 2006 - IEEE International Magnetics Conference.

[37]  J. González,et al.  Transport properties of two finite armchair graphene nanoribbons , 2013, Nanoscale Research Letters.

[38]  G. Pozzi,et al.  Characterization of JEOL 2100F Lorentz-TEM for low-magnification electron holography and magnetic imaging. , 2008, Ultramicroscopy.

[39]  R. E. Rosensweig,et al.  Heating magnetic fluid with alternating magnetic field , 2002 .

[40]  Wei Cheng,et al.  One-step synthesis of superparamagnetic monodisperse porous Fe3O4 hollow and core-shell spheres , 2010 .

[41]  Jung-tak Jang,et al.  Nanoscale magnetism control via surface and exchange anisotropy for optimized ferrimagnetic hysteresis. , 2012, Nano letters.

[42]  G. Rowlands,et al.  Energetics of magnetic ring and disk elements: Uniform versus vortex state , 2006 .

[43]  S. Haas,et al.  Phase diagram of magnetization reversal processes in nanorings , 2009, 0912.0319.

[44]  Yi Yan Yang,et al.  Epitaxial growth of γ-Fe2O3 thin films on MgO substrates by pulsed laser deposition and their properties , 2013 .

[45]  María del Puerto Morales,et al.  Static and dynamic magnetic properties of spherical magnetite nanoparticles , 2003 .

[46]  Valentyn Novosad,et al.  Biofunctionalized magnetic-vortex microdiscs for targeted cancer-cell destruction. , 2010, Nature materials.

[47]  Sébastien Lachaize,et al.  Optimal Size of Nanoparticles for Magnetic Hyperthermia: A Combined Theoretical and Experimental Study , 2011 .

[48]  H. Mamiya,et al.  Hyperthermic effects of dissipative structures of magnetic nanoparticles in large alternating magnetic fields , 2011, Scientific reports.

[49]  J. Ding,et al.  Synthesis of Magnetite Nanooctahedra and Their Magnetic Field-Induced Two-/Three-Dimensional Superstructure , 2010 .

[50]  Xianfeng Yang,et al.  Continuous shape- and spectroscopy-tuning of hematite nanocrystals. , 2010, Inorganic chemistry.

[51]  M. Takano,et al.  Large-scale synthesis of single-crystalline iron oxide magnetic nanorings. , 2008, Journal of the American Chemical Society.

[52]  M. Olivo,et al.  Single-crystalline MFe(2)O(4) nanotubes/nanorings synthesized by thermal transformation process for biological applications. , 2009, ACS nano.

[53]  T. Hyeon,et al.  Chemical design of biocompatible iron oxide nanoparticles for medical applications. , 2013, Small.

[54]  J. Ding,et al.  Synthesis of nonstoichiometric zinc ferrite nanoparticles with extraordinary room temperature magnetism and their diverse applications , 2013 .

[55]  M. Olivo,et al.  Quantum dot capped magnetite nanorings as high performance nanoprobe for multiphoton fluorescence and magnetic resonance imaging. , 2010, Journal of the American Chemical Society.

[56]  Timothy L. Kline,et al.  Biocompatible high-moment FeCo-Au magnetic nanoparticles for magnetic hyperthermia treatment optimization , 2009 .