Spectral algorithms for heterogeneous biological networks.

Spectral methods, which use information relating to eigenvectors, singular vectors and generalized singular vectors, help us to visualize and summarize sets of pairwise interactions. In this work, we motivate and discuss the use of spectral methods by taking a matrix computation view and applying concepts from applied linear algebra. We show that this unified approach is sufficiently flexible to allow multiple sources of network information to be combined. We illustrate the methods on microarray data arising from a large population-based study in human adipose tissue, combined with related information concerning metabolic pathways.

[1]  Michael C. Hout,et al.  Multidimensional Scaling , 2003, Encyclopedic Dictionary of Archaeology.

[2]  Orly Alter,et al.  GSVD Comparison of Patient-Matched Normal and Tumor aCGH Profiles Reveals Global Copy-Number Alterations Predicting Glioblastoma Multiforme Survival , 2012, PloS one.

[3]  O. Alter,et al.  A Higher-Order Generalized Singular Value Decomposition for Comparison of Global mRNA Expression from Multiple Organisms , 2011, PloS one.

[4]  Desmond J. Higham,et al.  Googling the Brain: Discovering Hierarchical and Asymmetric Network Structures, with Applications in Neuroscience , 2011, Internet Math..

[5]  D. Higham,et al.  Discretization Provides a Conceptually Simple Tool to Build Expression Networks , 2011, PloS one.

[6]  Tony White,et al.  The Structure of Complex Networks , 2011 .

[7]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[8]  Desmond J. Higham,et al.  Exploring metabolic pathway disruption in the subchronic phencyclidine model of schizophrenia with the Generalized Singular Value Decomposition , 2011, BMC Systems Biology.

[9]  Mark Newman,et al.  Networks: An Introduction , 2010 .

[10]  D. Bonthron,et al.  Ketohexokinase: Expression and Localization of the Principal Fructose-metabolizing Enzyme , 2009, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[11]  Brad T. Sherman,et al.  Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists , 2008, Nucleic acids research.

[12]  V. Lacroix,et al.  An Introduction to Metabolic Networks and Their Structural Analysis , 2008, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[13]  Ernesto Estrada,et al.  Communicability and multipartite structures in complex networks at negative absolute temperatures. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  Andreas W. Schreiber,et al.  Combining transcriptional datasets using the generalized singular value decomposition , 2008, BMC Bioinformatics.

[15]  A. Pocai,et al.  Leptin controls adipose tissue lipogenesis via central, STAT3–independent mechanisms , 2008, Nature Medicine.

[16]  H. Stefánsson,et al.  Genetics of gene expression and its effect on disease , 2008, Nature.

[17]  Desmond J. Higham,et al.  Multidimensional partitioning and bi-partitioning: analysis and application to gene expression data sets , 2008, Int. J. Comput. Math..

[18]  Brad T. Sherman,et al.  Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources , 2008, Nature Protocols.

[19]  Peter Grindrod,et al.  DNA meets the SVD , 2008 .

[20]  Guillermo Ricardo Simari,et al.  Non-commercial Research and Educational Use including without Limitation Use in Instruction at Your Institution, Sending It to Specific Colleagues That You Know, and Providing a Copy to Your Institution's Administrator. All Other Uses, Reproduction and Distribution, including without Limitation Comm , 2022 .

[21]  Gabriela Kalna,et al.  Spectral analysis of two-signed microarray expression data. , 2007, Mathematical medicine and biology : a journal of the IMA.

[22]  Khosrow Adeli,et al.  Fructose, insulin resistance, and metabolic dyslipidemia , 2005, Nutrition & metabolism.

[23]  Gábor Szabó,et al.  Structure of complex networks , 2005 .

[24]  M. Newman,et al.  Finding and evaluating community structure in networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  Elissa Ross Spectral Graph Drawing : A Survey , 2004 .

[26]  Desmond J. Higham,et al.  Unravelling small world networks , 2003 .

[27]  Joseph T. Chang,et al.  Spectral biclustering of microarray data: coclustering genes and conditions. , 2003, Genome research.

[28]  M. Newman,et al.  Mixing patterns in networks. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  Luis Mateus Rocha,et al.  Singular value decomposition and principal component analysis , 2003 .

[30]  Joseph T. Chang,et al.  Spectral biclustering of microarray cancer data : co-clustering genes and conditions , 2003 .

[31]  Sayan Mukherjee,et al.  An Analytical Method for Multiclass Molecular Cancer Classification , 2003, SIAM Rev..

[32]  P. Grindrod Range-dependent random graphs and their application to modeling large small-world Proteome datasets. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  Inderjit S. Dhillon,et al.  Co-clustering documents and words using bipartite spectral graph partitioning , 2001, KDD '01.

[34]  D. Botstein,et al.  Cluster analysis and display of genome-wide expression patterns. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[35]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[36]  Fan Chung,et al.  Spectral Graph Theory , 1996 .

[37]  Jean-Yves Audibert Optimization for Machine Learning , 1995 .

[38]  Dirk Roose,et al.  An Improved Spectral Bisection Algorithm and its Application to Dynamic Load Balancing , 1995, EUROSIM International Conference.

[39]  M. Fiedler Algebraic connectivity of graphs , 1973 .