SHIRAZ: an automated histology image annotation system for zebrafish phenomics

Histological characterization is used in clinical and research contexts as a highly sensitive method for detecting the morphological features of disease and abnormal gene function. Histology has recently been accepted as a phenotyping method for the forthcoming Zebrafish Phenome Project, a large-scale community effort to characterize the morphological, physiological, and behavioral phenotypes resulting from the mutations in all known genes in the zebrafish genome. In support of this project, we present a novel content-based image retrieval system for the automated annotation of images containing histological abnormalities in the developing eye of the larval zebrafish.

[1]  Rafael C. González,et al.  Digital image processing using MATLAB , 2006 .

[2]  Michael McGill,et al.  Introduction to Modern Information Retrieval , 1983 .

[3]  Yanxi Liu,et al.  Rotation symmetry group detection via frequency analysis of frieze-expansions , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[4]  Alexei A. Efros,et al.  Discovering Texture Regularity as a Higher-Order Correspondence Problem , 2006, ECCV.

[5]  Ralf Dahm,et al.  Zebrafish: A Practical Approach. Edited by C. NÜSSLEIN-VOLHARD and R. DAHM. Oxford University Press. 2002. 322 pages. ISBN 0 19 963808 X. Price £40.00 (paperback). ISBN 0 19 963809 8. Price £80.00 (hardback). , 2003 .

[6]  Yanxi Liu,et al.  Automatic lattice detection in near-regular histology array images , 2008, 2008 15th IEEE International Conference on Image Processing.

[7]  James Ze Wang,et al.  Real-Time Computerized Annotation of Pictures , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  James Ze Wang,et al.  SIMPLIcity: Semantics-Sensitive Integrated Matching for Picture LIbraries , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  John P. Oakley,et al.  Storage and Retrieval for Image and Video Databases , 1993 .

[10]  Y. Lussier,et al.  Computational approaches to phenotyping: high-throughput phenomics. , 2007, Proceedings of the American Thoracic Society.

[11]  Maria Petrou,et al.  Image processing - dealing with texture , 2020 .

[12]  Claudio Gutierrez,et al.  Survey of graph database models , 2008, CSUR.

[13]  R. O'Neill,et al.  Lacunarity indices as measures of landscape texture , 1993, Landscape Ecology.

[14]  B. Canada,et al.  Automated segmentation and classification of zebrafish histology images for high-throughput phenotyping , 2007, 2007 IEEE/NIH Life Science Systems and Applications Workshop.

[15]  Joshua M. Stuart,et al.  Information-based methods for predicting gene function from systematic gene knock-downs , 2008, BMC Bioinformatics.

[16]  Robert M. Haralick,et al.  Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..

[17]  Jiebo Luo,et al.  Data Mining. Multimedia, Soft Computing, and Bioinformatics , 2005, IEEE Transactions on Neural Networks.

[18]  Yanxi Liu,et al.  Towards efficient automated characterization of irregular histology images via transformation to frieze-like patterns , 2008, CIVR '08.

[19]  Sherry Woodhouse,et al.  Interobserver and Intraobserver Bias Exists in the Interpretation of Anal Dysplasia , 2003, Diseases of the colon and rectum.

[20]  Nelson Correa,et al.  Statistical categorization of human histological images , 2005, IEEE International Conference on Image Processing 2005.

[21]  Rudolf Hanka,et al.  Histological image retrieval based on semantic content analysis , 2003, IEEE Transactions on Information Technology in Biomedicine.

[22]  Christos Faloutsos,et al.  C-DEM: a multi-modal query system for Drosophila Embryo databases , 2008, Proc. VLDB Endow..

[23]  Jun Kong,et al.  Computerized Pathological Image Analysis For Neuroblastoma Prognosis , 2007, AMIA.

[24]  Yanxi Liu,et al.  A Lattice-Based MRF Model for Dynamic Near-Regular Texture Tracking , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[25]  S. Joshi,et al.  High-throughput zebrafish histology. , 2006, Methods.

[26]  K. Cheng,et al.  Agarose-embedded tissue arrays for histologic and genetic analysis. , 1998, BioTechniques.

[27]  Marcel Worring,et al.  Content-Based Image Retrieval at the End of the Early Years , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  James Ze Wang,et al.  Automatic Linguistic Indexing of Pictures by a Statistical Modeling Approach , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[29]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[30]  Deborah B. Thompson,et al.  AUTOMATED LOCATION OF DYSPLASTIC FIELDS IN COLORECTAL HISTOLOGY USING IMAGE TEXTURE ANALYSIS , 1997, The Journal of pathology.

[31]  Anil K. Jain,et al.  Markov Random Field Texture Models , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[32]  Yanxi Liu,et al.  A computational model for periodic pattern perception based on frieze and wallpaper groups , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[33]  Sonja Zillner,et al.  Semantics and CBIR: a medical imaging perspective , 2008, CIVR '08.

[34]  James Ze Wang,et al.  Image retrieval: Ideas, influences, and trends of the new age , 2008, CSUR.

[35]  A. Madabhushi,et al.  Detecting Prostatic Adenocarcinoma From Digitized Histology Using a Multi-Scale Hierarchical Classification Approach , 2006, 2006 International Conference of the IEEE Engineering in Medicine and Biology Society.

[36]  G. C. Shephard,et al.  Tilings and Patterns , 1990 .

[37]  B. Yener,et al.  Automated cancer diagnosis based on histopathological images : a systematic survey , 2005 .

[38]  Antoine Geissbühler,et al.  A Review of Content{Based Image Retrieval Systems in Medical Applications { Clinical Bene(cid:12)ts and Future Directions , 2022 .

[39]  Christos Faloutsos,et al.  QBIC project: querying images by content, using color, texture, and shape , 1993, Electronic Imaging.

[40]  M. Plummer,et al.  Histological diagnosis of precancerous lesions of the stomach: a reliability study. , 1997, International journal of epidemiology.