Parametric curves with Pythagorean binormal
暂无分享,去创建一个
[1] Hwan Pyo Moon,et al. Clifford Algebra, Spin Representation, and Rational Parameterization of Curves and Surfaces , 2002, Adv. Comput. Math..
[2] Dereck S. Meek,et al. Hermite interpolation with Tschirnhausen cubic spirals , 1997, Comput. Aided Geom. Des..
[3] Rida T. Farouki,et al. Rotation-minimizing Euler-Rodrigues rigid-body motion interpolants , 2013, Comput. Aided Geom. Des..
[4] Vito Vitrih,et al. Geometric Lagrange interpolation by planar cubic Pythagorean-hodograph curves , 2008, Comput. Aided Geom. Des..
[5] Rida T. Farouki,et al. Pythagorean-Hodograph Curves , 2002, Handbook of Computer Aided Geometric Design.
[6] Vito Vitrih,et al. On interpolation by Planar cubic G2 pythagorean-hodograph spline curves , 2010, Math. Comput..
[7] Chang Yong Han. Geometric Hermite interpolation by monotone helical quintics , 2010, Comput. Aided Geom. Des..
[8] Rida T. Farouki,et al. A complete classification of quintic space curves with rational rotation-minimizing frames , 2012, J. Symb. Comput..
[9] Helmut Pottmann,et al. Rational curves and surfaces with rational offsets , 1995, Comput. Aided Geom. Des..
[10] Rida T. Farouki,et al. The conformal map z -> z2 of the hodograph plane , 1994, Comput. Aided Geom. Des..
[11] Vito Vitrih,et al. An approach to geometric interpolation by Pythagorean-hodograph curves , 2011, Advances in Computational Mathematics.
[12] Rida T. Farouki,et al. Rational rotation-minimizing frames on polynomial space curves of arbitrary degree , 2010, J. Symb. Comput..
[13] Zbynek Sír,et al. Rational Pythagorean-hodograph space curves , 2011, Comput. Aided Geom. Des..
[14] Rida T. Farouki,et al. Pythagorean-Hodograph Curves: Algebra and Geometry Inseparable , 2007, Geometry and Computing.
[15] Rida T. Farouki,et al. Rotation – minimizing conformal frames , 2013 .
[16] Rida T. Farouki,et al. Rational approximation schemes for rotation-minimizing frames on Pythagorean-hodograph curves , 2003, Comput. Aided Geom. Des..
[17] B. Jüttler,et al. Rational approximation of rotation minimizing frames using Pythagorean-hodograph cubics , 1999 .
[18] Rida T. Farouki,et al. Equivalence of distinct characterizations for rational rotation-minimizing frames on quintic space curves , 2011, Comput. Aided Geom. Des..
[19] Helmut Pottmann,et al. Applications of the dual Be´zier representation of rational curves and surfaces , 1994 .
[20] T FaroukiRida,et al. Rational rotation-minimizing frames on polynomial space curves of arbitrary degree , 2010 .
[21] Juan Monterde,et al. A characterization of helical polynomial curves of any degree , 2009, Adv. Comput. Math..
[22] Vito Vitrih,et al. Motion design with Euler-Rodrigues frames of quintic Pythagorean-hodograph curves , 2012, Math. Comput. Simul..
[23] Rida T. Farouki,et al. Helical polynomial curves and double Pythagorean hodographs I. Quaternion and Hopf map representations , 2009, J. Symb. Comput..
[24] J. Fiorot,et al. Characterizations of the set of rational parametric curves with rational offsets , 1994 .
[25] T. Sakkalis,et al. Pythagorean hodographs , 1990 .
[26] J. Monterde,et al. A characterization of quintic helices , 2005 .
[27] Hyeong In Choi,et al. Euler-Rodrigues frames on spatial Pythagorean-hodograph curves , 2002, Comput. Aided Geom. Des..
[28] Carla Manni,et al. Design of rational rotation-minimizing rigid body motions by Hermite interpolation , 2011, Math. Comput..
[29] Rida T. Farouki,et al. Rotation-minimizing osculating frames , 2014, Comput. Aided Geom. Des..
[30] Chang Yong Han. Nonexistence of rational rotation-minimizing frames on cubic curves , 2008, Comput. Aided Geom. Des..
[31] Rida T. Farouki,et al. Quaternion and Hopf map characterizations for the existence of rational rotation-minimizing frames on quintic space curves , 2010, Adv. Comput. Math..
[32] Vito Vitrih,et al. Dual representation of spatial rational Pythagorean-hodograph curves , 2014, Comput. Aided Geom. Des..
[33] Carla Manni,et al. Geometric Hermite interpolation by spatial Pythagorean-hodograph cubics , 2005, Adv. Comput. Math..
[34] Rida T. Farouki,et al. Helical polynomial curves and double Pythagorean hodographs II. Enumeration of low-degree curves , 2009, J. Symb. Comput..