DECOMPOSITION OF HARDY FUNCTIONS INTO SQUARE INTEGRABLE WAVELETS OF CONSTANT SHAPE

An arbitrary square integrable real-valued function (or, equivalently, the associated Hardy function) can be conveniently analyzed into a suitable family of square integrable wavelets of constant shape, (i.e. obtained by shifts and dilations from any one of them.) The resulting integral transform is isometric and self-reciprocal if the wavelets satisfy an “admissibility condition” given here. Explicit expressions are obtained in the case of a particular analyzing family that plays a role analogous to that of coherent states (Gabor wavelets) in the usual $L_2 $ -theory. They are written in terms of a modified $\Gamma $-function that is introduced and studied. From the point of view of group theory, this paper is concerned with square integrable coefficients of an irreducible representation of the nonunimodular $ax + b$-group.