Pattern recognition: Historical perspective and future directions

“What being walks sometimes on two feet, sometimes on three, and sometimes on four, and is weakest when it has the most?” —The Sphinx's Riddle

[1]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[2]  Azriel Rosenfeld,et al.  Multiresolution image processing and analysis , 1984 .

[3]  Lawrence Sirovich,et al.  Application of the Karhunen-Loeve Procedure for the Characterization of Human Faces , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  T. Valentine The Quarterly Journal of Experimental Psychology Section A: Human Experimental Psychology a Unified Account of the Effects of Distinctiveness, Inversion, and Race in Face Recognition , 2022 .

[5]  Elie Bienenstock,et al.  Neural Networks and the Bias/Variance Dilemma , 1992, Neural Computation.

[6]  Yi Li,et al.  A multiscale morphological method for human posture recognition , 1998, Proceedings Third IEEE International Conference on Automatic Face and Gesture Recognition.

[7]  Geoffrey E. Hinton,et al.  Adaptive Mixtures of Local Experts , 1991, Neural Computation.

[8]  Alex Pentland,et al.  Understanding purposeful human motion , 2000, Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580).

[9]  Harry Wechsler,et al.  The FERET database and evaluation procedure for face-recognition algorithms , 1998, Image Vis. Comput..

[10]  Christopher M. Bishop,et al.  Neural networks for pattern recognition , 1995 .

[11]  Alex Pentland,et al.  A Bayesian Computer Vision System for Modeling Human Interactions , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  R Hecht-Nielsen,et al.  Replicator neural networks for universal optimal source coding. , 1995, Science.

[13]  Wilson S. Geisler,et al.  Multichannel Texture Analysis Using Localized Spatial Filters , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Teuvo Kohonen,et al.  Self-Organization and Associative Memory , 1988 .

[16]  Robert Frischholz,et al.  BioID: A Multimodal Biometric Identification System , 2000, Computer.

[17]  Aapo Hyvärinen,et al.  Survey on Independent Component Analysis , 1999 .

[18]  Aapo Hyvärinen,et al.  A Fast Fixed-Point Algorithm for Independent Component Analysis , 1997, Neural Computation.

[19]  David J. Field,et al.  Emergence of simple-cell receptive field properties by learning a sparse code for natural images , 1996, Nature.

[20]  Terrence J. Sejnowski,et al.  An Information-Maximization Approach to Blind Separation and Blind Deconvolution , 1995, Neural Computation.

[21]  Alex Pentland,et al.  Face Recognition for Smart Environments , 2000, Computer.

[22]  Mitchell Feigenbaum,et al.  Local feature analysis: a statistical theory for information representation and transmission , 1998 .

[23]  T. Poggio A theory of how the brain might work. , 1990, Cold Spring Harbor symposia on quantitative biology.

[24]  Claude E. Shannon,et al.  The Mathematical Theory of Communication , 1950 .

[25]  P Reinagel,et al.  Natural scene statistics at the centre of gaze. , 1999, Network.

[26]  Alberto Maria Segre,et al.  Programs for Machine Learning , 1994 .

[27]  F. Keil,et al.  Categorical effects in the perception of faces , 1995, Cognition.

[28]  Edward H. Adelson,et al.  The Laplacian Pyramid as a Compact Image Code , 1983, IEEE Trans. Commun..

[29]  Michael I. Jordan,et al.  Hierarchical Mixtures of Experts and the EM Algorithm , 1994, Neural Computation.

[30]  L X Wang,et al.  Fuzzy basis functions, universal approximation, and orthogonal least-squares learning , 1992, IEEE Trans. Neural Networks.

[31]  W. Pitts,et al.  What the Frog's Eye Tells the Frog's Brain , 1959, Proceedings of the IRE.

[32]  Richard P. Lippmann,et al.  A Comparative Study of the Practical Characteristics of Neural Network and Conventional Pattern Classifiers , 1990, NIPS 1990.

[33]  Vladimir Vapnik,et al.  The Nature of Statistical Learning , 1995 .

[34]  Richard Lippmann,et al.  Neural Network Classifiers Estimate Bayesian a posteriori Probabilities , 1991, Neural Computation.

[35]  Claude E. Shannon,et al.  A mathematical theory of communication , 1948, MOCO.

[36]  H. Sebastian Seung,et al.  Learning the parts of objects by non-negative matrix factorization , 1999, Nature.

[37]  J. Ross Quinlan,et al.  C4.5: Programs for Machine Learning , 1992 .

[38]  John Daugman,et al.  Six formal properties of two-dimensional anisotropie visual filters: Structural principles and frequency/orientation selectivity , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[39]  Qinghua Zhang,et al.  Wavelet networks , 1992, IEEE Trans. Neural Networks.

[40]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[41]  G. Lorentz Approximation of Functions , 1966 .

[42]  Shree K. Nayar,et al.  Catadioptric omnidirectional camera , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[43]  John Daugman,et al.  High Confidence Visual Recognition of Persons by a Test of Statistical Independence , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[44]  G. Rhodes,et al.  Identification and ratings of caricatures: Implications for mental representations of faces , 1987, Cognitive Psychology.

[45]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[46]  Robert A. Johnston,et al.  A Unified Account of the Effects of Caricaturing Faces , 1999 .

[47]  Federico Girosi,et al.  An Equivalence Between Sparse Approximation and Support Vector Machines , 1998, Neural Computation.

[48]  Stephen Grossberg,et al.  Nonlinear neural networks: Principles, mechanisms, and architectures , 1988, Neural Networks.

[49]  R.P. Lippmann,et al.  Pattern classification using neural networks , 1989, IEEE Communications Magazine.

[50]  Brian D. Ripley,et al.  Pattern Recognition and Neural Networks , 1996 .

[51]  Federico Girosi,et al.  Training support vector machines: an application to face detection , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[52]  John Daugman,et al.  Biometric decision landscapes , 2000 .

[53]  Leslie G. Valiant,et al.  A theory of the learnable , 1984, STOC '84.

[54]  Alice J. O'Toole,et al.  Low-dimensional representation of faces in higher dimensions of the face space , 1993 .

[55]  Stephen M. Kosslyn,et al.  Pictures and names: Making the connection , 1984, Cognitive Psychology.

[56]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[57]  Sholom M. Weiss,et al.  Computer Systems That Learn , 1990 .

[58]  William K. Estes,et al.  Concepts, Categories, and Psychological Science , 1993 .

[59]  Gillian Rhodes,et al.  Coding spatial variations in faces and simple shapes: a test of two models , 1998, Vision Research.

[60]  Neil A. Macmillan,et al.  Detection Theory: A User's Guide , 1991 .

[61]  Keinosuke Fukunaga,et al.  Introduction to Statistical Pattern Recognition , 1972 .

[62]  Juyang Weng,et al.  Using Discriminant Eigenfeatures for Image Retrieval , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[63]  Dennis Gabor,et al.  Theory of communication , 1946 .

[64]  L. Cooper,et al.  When Networks Disagree: Ensemble Methods for Hybrid Neural Networks , 1992 .

[65]  Vladimir Cherkassky,et al.  Learning from data , 1998 .

[66]  Shimon Edelman,et al.  Representation and recognition in vision , 1999 .

[67]  H. B. Barlow,et al.  Unsupervised Learning , 1989, Neural Computation.

[68]  L. Squire,et al.  The learning of categories: parallel brain systems for item memory and category knowledge. , 1993, Science.

[69]  Luc Vandendorpe,et al.  The M2VTS Multimodal Face Database (Release 1.00) , 1997, AVBPA.

[70]  Huan Liu,et al.  Book review: Machine Learning, Neural and Statistical Classification Edited by D. Michie, D.J. Spiegelhalter and C.C. Taylor (Ellis Horwood Limited, 1994) , 1996, SGAR.

[71]  Jerome H. Friedman,et al.  An Overview of Predictive Learning and Function Approximation , 1994 .

[72]  Pierre Comon,et al.  Independent component analysis, A new concept? , 1994, Signal Process..

[73]  Ron Kohavi,et al.  Feature Subset Selection Using the Wrapper Method: Overfitting and Dynamic Search Space Topology , 1995, KDD.

[74]  Ralph Linsker,et al.  Self-organization in a perceptual network , 1988, Computer.

[75]  H. B. Barlow,et al.  Finding Minimum Entropy Codes , 1989, Neural Computation.

[76]  Simone Santini,et al.  The Graphical Specification of Similarity Queries , 1996, J. Vis. Lang. Comput..

[77]  Harry Wechsler,et al.  From Statistics to Neural Networks , 1994, NATO ASI Series.

[78]  Stéphane Mallat,et al.  Matching pursuits with time-frequency dictionaries , 1993, IEEE Trans. Signal Process..

[79]  Anastasios Tefas,et al.  Face verification based on morphological shape decomposition , 1998, Proceedings Third IEEE International Conference on Automatic Face and Gesture Recognition.

[80]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[81]  Joseph J. Atick,et al.  What Does the Retina Know about Natural Scenes? , 1992, Neural Computation.

[82]  Anders Krogh,et al.  Neural Network Ensembles, Cross Validation, and Active Learning , 1994, NIPS.

[83]  A. Tversky Features of Similarity , 1977 .

[84]  J. Friedman,et al.  Projection Pursuit Regression , 1981 .

[85]  Massimo Tistarelli,et al.  Recognition by using an active/space-variant sensor , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[86]  Aaron F. Bobick,et al.  A Framework for Recognizing Multi-Agent Action from Visual Evidence , 1999, AAAI/IAAI.

[87]  M. S. Mayzner,et al.  Cognition And Reality , 1976 .

[88]  Chengjun Liu,et al.  Face Recognition Using Evolutionary Pursuit , 1998, ECCV.

[89]  Penio S. Penev,et al.  Local feature analysis: A general statistical theory for object representation , 1996 .

[90]  John Daugman,et al.  An information-theoretic view of analog representation in striate cortex , 1993 .

[91]  L. Breiman Arcing classifier (with discussion and a rejoinder by the author) , 1998 .

[92]  Marian Stewart Bartlett,et al.  Classifying Facial Actions , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[93]  Daniel J. Amit,et al.  Conversion of Temporal Correlations Between Stimuli to Spatial Correlations Between Attractors , 1999, Neural Computation.

[94]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[95]  Daniel P. Huttenlocher,et al.  Comparing Images Using the Hausdorff Distance , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[96]  Yoav Freund,et al.  Experiments with a New Boosting Algorithm , 1996, ICML.

[97]  Bernhard Schölkopf,et al.  Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.

[98]  Leslie G. Valiant,et al.  A View of Computational Learning Theory , 1993 .

[99]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[100]  Harry Wechsler,et al.  Fast searching of digital face libraries using binary image metrics , 1998, Proceedings. Fourteenth International Conference on Pattern Recognition (Cat. No.98EX170).

[101]  Melanie Mitchell,et al.  An introduction to genetic algorithms , 1996 .

[102]  P. Jonathon Phillips,et al.  Support Vector Machines Applied to Face Recognition , 1998, NIPS.

[103]  K. Etemad,et al.  Discriminant analysis for recognition of human face images , 1997 .

[104]  George Cybenko,et al.  Approximation by superpositions of a sigmoidal function , 1992, Math. Control. Signals Syst..

[105]  Leslie S. Smith,et al.  The principal components of natural images , 1992 .

[106]  Chengjun Liu,et al.  Robust coding schemes for indexing and retrieval from large face databases , 2000, IEEE Trans. Image Process..

[107]  Donald F. Specht,et al.  Probabilistic neural networks , 1990, Neural Networks.

[108]  A. Barron Approximation and Estimation Bounds for Artificial Neural Networks , 1991, COLT '91.

[109]  John R. Vokey,et al.  The Face-Space Typicality Paradox: Understanding the Face-Space Metaphor , 1998 .

[110]  M. Kramer Nonlinear principal component analysis using autoassociative neural networks , 1991 .

[111]  A. G. Ivakhnenko,et al.  Polynomial Theory of Complex Systems , 1971, IEEE Trans. Syst. Man Cybern..

[112]  D. Ruderman The statistics of natural images , 1994 .

[113]  Robert P. W. Duin,et al.  Bagging for linear classifiers , 1998, Pattern Recognit..

[114]  Roberto Cipolla,et al.  A probabilistic framework for perceptual grouping of features for human face detection , 1996, Proceedings of the Second International Conference on Automatic Face and Gesture Recognition.

[115]  David H. Wolpert,et al.  Stacked generalization , 1992, Neural Networks.

[116]  H. Wechsler,et al.  Comparative Assessment of Independent Component Analysis (ICA) for Face Recognition , 1999 .

[117]  Tomaso A. Poggio,et al.  A Sparse Representation for Function Approximation , 1998, Neural Computation.

[118]  Ralf Der,et al.  Proc. ICANN'94, Int. Conf. on Artificial Neural Networks , 1994 .

[119]  T Poggio,et al.  Regularization Algorithms for Learning That Are Equivalent to Multilayer Networks , 1990, Science.