Optimal unbiased estimation for maximal distribution

Unbiased estimation for parameters of maximal distribution is a fundamental problem in the statistical theory of sublinear expectations. In this paper, we proved that the maximum estimator is the largest unbiased estimator for the upper mean and the minimum estimator is the smallest unbiased estimator for the lower mean.

[1]  Xinpeng Li A central limit theorem for m-dependent random variables under sublinear expectations , 2015 .

[2]  S. Peng G -Expectation, G -Brownian Motion and Related Stochastic Calculus of Itô Type , 2006, math/0601035.

[3]  S. Peng Nonlinear Expectations and Stochastic Calculus under Uncertainty , 2010, Probability Theory and Stochastic Modelling.

[4]  Shige Peng,et al.  NONLINEAR EXPECTATIONS AND NONLINEAR MARKOV CHAINS , 2005 .

[5]  Sublinear Expectation Nonlinear Regression for the Financial Risk Measurement and Management , 2013 .

[6]  Shige Peng,et al.  A New Central Limit Theorem under Sublinear Expectations , 2008, 0803.2656.

[7]  Pengshige NONLINEAR EXPECTATIONS AND NONLINEAR MARKOV CHAINS , 2005 .

[8]  Mingshang Hu,et al.  A monotone scheme for nonlinear partial integro-differential equations with the convergence rate of α-stable limit theorem under sublinear expectation , 2021, ArXiv.

[9]  Dmitry B. Rokhlin,et al.  Asymptotic sequential Rademacher complexity of a finite function class , 2016, ArXiv.

[10]  Strong laws of large numbers for sub-linear expectations , 2010, 1006.0749.

[11]  S. Peng Multi-dimensional G-Brownian motion and related stochastic calculus under G-expectation , 2006, math/0601699.

[12]  Li-Xin Zhang Donsker’s Invariance Principle Under the Sub-linear Expectation with an Application to Chung’s Law of the Iterated Logarithm , 2015, 1503.02845.

[13]  Sublinear expectation linear regression , 2013, 1304.3559.

[14]  Zengjing Chen,et al.  Invariance principles for the law of the iterated logarithm under G-framework , 2015 .

[15]  Li-Xin Zhang Rosenthal’s inequalities for independent and negatively dependent random variables under sub-linear expectations with applications , 2014, 1408.5291.

[16]  Shige Peng,et al.  Law of large numbers and central limit theorem under nonlinear expectations , 2007, Probability, Uncertainty and Quantitative Risk.

[17]  The Independence under Sublinear Expectations , 2011, 1107.0361.

[18]  Ze-Chun Hu,et al.  Multi-dimensional central limit theorems and laws of large numbers under sublinear expectations , 2012, 1211.1090.

[19]  Shige Peng,et al.  Survey on normal distributions, central limit theorem, Brownian motion and the related stochastic calculus under sublinear expectations , 2009 .

[20]  Jianfeng Yao,et al.  Improving Value-at-Risk Prediction Under Model Uncertainty , 2018, Journal of Financial Econometrics.

[21]  Exponential inequalities under the sub-linear expectations with applications to laws of the iterated logarithm , 2014, 1409.0285.