Locus coeruleus and dopaminergic consolidation of everyday memory

[1]  Talia N. Lerner,et al.  Communication in Neural Circuits: Tools, Opportunities, and Challenges , 2016, Cell.

[2]  O. Yizhar,et al.  Biophysical constraints of optogenetic inhibition at presynaptic terminals , 2016, Nature Neuroscience.

[3]  Matthias J. Gruber,et al.  Post-learning Hippocampal Dynamics Promote Preferential Retention of Rewarding Events , 2016, Neuron.

[4]  E. Phelps,et al.  Flashbulb Memories , 2016, Current directions in psychological science.

[5]  S. Siegelbaum,et al.  Midbrain dopamine neurons bidirectionally regulate CA3-CA1 synaptic drive , 2015, Nature Neuroscience.

[6]  J. Gordon,et al.  Modeling the Spatiotemporal Dynamics of Light and Heat Propagation for In Vivo Optogenetics. , 2015, Cell reports.

[7]  Liqun Luo,et al.  Viral-genetic tracing of the input–output organization of a central norepinephrine circuit , 2015, Nature.

[8]  L. Davachi,et al.  Emotional learning selectively and retroactively strengthens memories for related events , 2015, Nature.

[9]  D. Dupret,et al.  Dopaminergic neurons promote hippocampal reactivation and spatial memory persistence , 2014, Nature Neuroscience.

[10]  Denise J. Cai,et al.  Synaptic tagging during memory allocation , 2014, Nature Reviews Neuroscience.

[11]  Tomonori Takeuchi,et al.  The synaptic plasticity and memory hypothesis: encoding, storage and persistence , 2014, Philosophical Transactions of the Royal Society B: Biological Sciences.

[12]  Nico Bunzeck,et al.  Pharmacological Dissociation of Novelty Responses in the Human Brain , 2013, Cerebral cortex.

[13]  D. Manahan‐Vaughan,et al.  Dopamine D1/D5 Receptors Mediate Informational Saliency that Promotes Persistent Hippocampal Long-Term Plasticity , 2012, Cerebral cortex.

[14]  Emrah Düzel,et al.  The Hippocampal-VTA Loop: The Role of Novelty and Motivation in Controlling the Entry of Information into Long-Term Memory , 2013, Intrinsically Motivated Learning in Natural and Artificial Systems.

[15]  Hermann Ebbinghaus (1885) Memory: A Contribution to Experimental Psychology , 2013, Annals of Neurosciences.

[16]  Josiah R. Boivin,et al.  A Causal Link Between Prediction Errors, Dopamine Neurons and Learning , 2013, Nature Neuroscience.

[17]  Marco Mirolli,et al.  Intrinsically Motivated Learning in Natural and Artificial Systems , 2013 .

[18]  Hermann Ebbinghaus,et al.  Memory: a contribution to experimental psychology. , 1987, Annals of neurosciences.

[19]  Tristan D. McClure-Begley,et al.  Faculty Opinions recommendation of Dopaminergic neurons inhibit striatal output through non-canonical release of GABA. , 2012 .

[20]  Eric R Kandel,et al.  The molecular biology of memory: cAMP, PKA, CRE, CREB-1, CREB-2, and CPEB , 2012, Molecular Brain.

[21]  R. Greene,et al.  CNS Dopamine Transmission Mediated by Noradrenergic Innervation , 2012, The Journal of Neuroscience.

[22]  Anne E Carpenter,et al.  Neuron-type specific signals for reward and punishment in the ventral tegmental area , 2011, Nature.

[23]  N. Lemon,et al.  Dopamine D1/D5 Receptors Contribute to De Novo Hippocampal LTD Mediated by Novel Spatial Exploration or Locus Coeruleus Activity , 2011, Cerebral cortex.

[24]  S. Panzeri,et al.  Noradrenergic neurons of the locus coeruleus are phase locked to cortical up-down states during sleep. , 2010, Cerebral cortex.

[25]  Karl Deisseroth,et al.  Optetrode: a multichannel readout for optogenetic control in freely moving mice , 2011, Nature Neuroscience.

[26]  R. Morris,et al.  Relevance of synaptic tagging and capture to the persistence of long-term potentiation and everyday spatial memory , 2010, Proceedings of the National Academy of Sciences.

[27]  Yuchio Yanagawa,et al.  Cytochemical and cytological properties of perineuronal oligodendrocytes in the mouse cortex , 2010, The European journal of neuroscience.

[28]  Masahiko Watanabe,et al.  Preferential Localization of Muscarinic M1 Receptor on Dendritic Shaft and Spine of Cortical Pyramidal Cells and Its Anatomical Evidence for Volume Transmission , 2010, The Journal of Neuroscience.

[29]  R. Morris,et al.  Making memories last: the synaptic tagging and capture hypothesis , 2010, Nature Reviews Neuroscience.

[30]  K. Deisseroth,et al.  Phasic Firing in Dopaminergic Neurons Is Sufficient for Behavioral Conditioning , 2009, Science.

[31]  S. Sara The locus coeruleus and noradrenergic modulation of cognition , 2009, Nature Reviews Neuroscience.

[32]  D. Moncada,et al.  Induction of Long-Term Memory by Exposure to Novelty Requires Protein Synthesis: Evidence for a Behavioral Tagging , 2007, The Journal of Neuroscience.

[33]  Masahiko Watanabe,et al.  Subcellular Arrangement of Molecules for 2-Arachidonoyl-Glycerol-Mediated Retrograde Signaling and Its Physiological Contribution to Synaptic Modulation in the Striatum , 2007, The Journal of Neuroscience.

[34]  N. Lemon,et al.  Dopamine D1/D5 Receptors Gate the Acquisition of Novel Information through Hippocampal Long-Term Potentiation and Long-Term Depression , 2006, The Journal of Neuroscience.

[35]  R. Morris,et al.  Elements of a neurobiological theory of hippocampal function: the role of synaptic plasticity, synaptic tagging and schemas , 2006, The European journal of neuroscience.

[36]  G. Flore,et al.  On the origin of cortical dopamine: is it a co-transmitter in noradrenergic neurons? , 2006, Current neuropharmacology.

[37]  T. Dawson,et al.  Bcl-x Is Required for Proper Development of the Mouse Substantia Nigra , 2005, The Journal of Neuroscience.

[38]  J. Lisman,et al.  The Hippocampal-VTA Loop: Controlling the Entry of Information into Long-Term Memory , 2005, Neuron.

[39]  H. Bengtsson,et al.  Transgenic expression of Cre recombinase from the tyrosine hydroxylase locus , 2004, Genesis.

[40]  Nao Chuhma,et al.  Dopamine Neurons Mediate a Fast Excitatory Signal via Their Glutamatergic Synapses , 2004, The Journal of Neuroscience.

[41]  J. Wixted The psychology and neuroscience of forgetting. , 2004, Annual review of psychology.

[42]  W. K. Cullen,et al.  Dopamine-dependent facilitation of LTP induction in hippocampal CA1 by exposure to spatial novelty , 2003, Nature Neuroscience.

[43]  M. Quirk,et al.  Hippocampal CA3 NMDA Receptors Are Crucial for Memory Acquisition of One-Time Experience , 2003, Neuron.

[44]  A. Dickinson,et al.  The neuropsychological basis of addictive behaviour , 2001, Brain Research Reviews.

[45]  J. Bolhuis Brain, perception, memory : advances in cognitive neuroscience , 2000 .

[46]  Bruce L. McNaughton,et al.  Environment-specific expression of the immediate-early gene Arc in hippocampal neuronal ensembles , 1999, Nature Neuroscience.

[47]  J. Siegel,et al.  Locus coeruleus neurons: cessation of activity during cataplexy , 1999, Neuroscience.

[48]  U. Frey,et al.  Synaptic tagging: implications for late maintenance of hippocampal long-term potentiation , 1998, Trends in Neurosciences.

[49]  George Paxinos,et al.  The Mouse Brain in Stereotaxic Coordinates , 2001 .

[50]  U. Frey,et al.  Synaptic tagging and long-term potentiation , 1997, Nature.

[51]  S. Sara,et al.  Response to Novelty and its Rapid Habituation in Locus Coeruleus Neurons of the Freely Exploring Rat , 1995, The European journal of neuroscience.

[52]  E. Kandel,et al.  D1/D5 receptor agonists induce a protein synthesis-dependent late potentiation in the CA1 region of the hippocampus. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[53]  C. Verney,et al.  Mesolimbic dopaminergic neurons innervating the hippocampal formation in the rat: a combined retrograde tracing and immunohistochemical study , 1994, Brain Research.

[54]  W. Schultz,et al.  Reward-related activity in the monkey striatum and substantia nigra. , 1993, Progress in brain research.

[55]  L. Squire Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans. , 1992, Psychological review.

[56]  U. Frey,et al.  The effect of dopaminergic D1 receptor blockade during tetanization on the expression of long-term potentiation in the rat CA1 region in vitro , 1991, Neuroscience Letters.

[57]  C. Harley Noradrenergic and locus coeruleus modulation of the perforant path-evoked potential in rat dentate gyrus supports a role for the locus coeruleus in attentional and memorial processes. , 1991, Progress in brain research.

[58]  T. Svensson,et al.  Clonidine modulates dopamine cell firing in rat ventral tegmental area. , 1989, European journal of pharmacology.

[59]  A. Grace,et al.  Intracellular and extracellular electrophysiology of nigral dopaminergic neurons—1. Identification and characterization , 1983, Neuroscience.

[60]  F. Bloom,et al.  Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep-waking cycle , 1981, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[61]  D Marr,et al.  Simple memory: a theory for archicortex. , 1971, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.